簡易檢索 / 詳目顯示

研究生: 陳嘉勻
Chen, Chia-Yun
論文名稱: 在基板上成長單壁奈米碳管及其催化劑作用的研究
指導教授: 戴念華
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 單壁奈米碳管催化劑化學氣相沉積法濺鍍
外文關鍵詞: SWNT, catalyst, CVD, sputter
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用熱裂解化學氣相沉積法成長奈米碳管。催化劑薄膜是利用磁控濺鍍的方式製備,配合還原氣氛/碳源流量比、反應壓力和溫度等調控,在基板(矽、二氧化矽或金屬電極層)上成長結晶性良好的單壁奈米碳管(SWNTs)。研究主要探討如何減小SWNTs管徑的分佈範圍,我們利用共濺鍍的方式製備催化劑薄膜,經由拉曼光譜和HRTEM的分析,證明所生成的SWNTs主要的管徑為1.24 nm。
    本研究亦探討鋁承載層對SWNTs成長的影響,實驗中主要討論(1)不同鋁膜厚度對SWNTs成長的比較;(2)鋁表面的粗糙性質對SWNTs成長的影響。
    在建立SWNTs的製程以及了解相關催化劑的作用後,研究的主題導向如何控制定量及定位的側向成長SWNTs,以應用於未來的電子元件上。


    摘要……………………………………………………………. I 誌謝………………………………………………………….. II 總目錄………………………………………………………. III 圖表目錄…………………………………………………….. VI 第一章 緒論………………………………………………….. 1 1-1 奈米碳管的結構……………………………………………… 1 1-2 奈米碳管之製程方法………………………………………… 2 1-3 奈米碳管的應用……………………………………………… 4 1-3-1 最小的天然試管:奈米碳管……………………….……. 4 1-3-2 奈米燈泡………………………...………………………. 5 第二章 文獻回顧…………………………………………...... 13 2-1 SWNTs的成長模型…………………………………………… 13 2-2 基板的選擇…………………………………………………. 16 2-3 承載層對奈米碳管成長的影響探討………………………. 17 2-4 鋁作為承載層成長SWNTs………………..…………….... 19 2-5 鉬對於SWNTs成長的作用…………..……………………… 20 第三章 研究方法與實驗步驟…………………………………… 28 3-1 實驗步驟流程圖……………………………………………. 28 3-2 製備催化劑薄膜……………………………………………. 28 3-3 熱處理形成催化顆粒………………………………………. 29 3-4 熱裂解碳源成長碳管………………………………………. 29 3-5 奈米碳管的分析簡介………………………………………. 30 第四章 結果與討論……………………………………………….33 4-1 以化學氣相沉積法在基板上成長SWNTs………………….. 33 4-1-1 反應溫度對於成長SWNTs的影響………………………….33 4-1-2 反應壓力與碳源流量對成長SWNTs的影響……………….36 4-2 利用共濺鍍方式製備催化劑薄膜成長SWNTs……………….38 4-2-1 催化劑的製備……………………………………………. 38 4-2-2 熱處理及成長條件……………………………………... 39 4-2-3 SWNTs的分析…………………………………………….. 40 4-3 鋁承載層對於SWNTs成長的研究…..……………………… 43 4-2-1 以鋁作為承載層對於SWNTs成長的影響………………… 43 4-3-2 鋁承載層的氧化…………….…………………………… 45 4-3-3 SWNTs的成長示意圖……………..……………………… 46 4-3-4 不同鋁膜厚對SWNTs成長的比較………..…………….. 47 4-3-5 鋁表面的粗糙性質對SWNTs成長的影響……..………… 49 4-4 側向成長SWNTs以跨接金屬電極…………………..……… 52 4-5 定位與定量成長SWNTs的嘗試……………..……………… 55 第五章 結論……………………………………………………….92 參考文獻………………………………...……………………… 94

    1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56, (1991).
    2. Rice University: Rick Smalley’s Group Home Page Image Gallery.
    3. J. H. Schon, Ch. Kloc, and B. Batlogg, High Temperature Super conductivity in Lattice-Expanded C60, Science 293, 2432 (2001).
    4. M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
    5. Carbon Nanotubes and Related Structures-new materials for the twenty-first century, Peter J. F. Harris, Department of Chemisty,University of Reading.
    6. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169, (1999).
    7. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett. 243, 49 (1995).
    8. A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, “Controlling single-wall nanotube diameters with variation in laser pulse power”, Chem. Phys. Lett., 316, 13 (2000).
    9. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, “Large-scale and low-cost synthesis of single walled carbon nanotubes”, Appl. Phys. Lett., 72, 3282 (1998).
    10. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition”, Appl. Phys. Lett., 73, 3845 (1998).
    11. C. Bower, W. Zhu, S. Jin and O. Zhou, “Plasma-induced alignment of carbon n.anotubes”, Appl. Phys. Lett., 77, 830 (2000).
    12. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 77, 3468 (2000).
    13. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550 (1995).
    14. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
    15. G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature,393, 346 (1998).
    16. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium”, Chem. Phys. Lett., 307, 153 (1999).
    17. H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, “Lithium intercalation into etched single-wall carbon nanotubes”, Physica B, 323, 133 (2002).
    18. A. C.Dillon, K.M. Jones, T. A.Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, ‘Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377(1997).
    19. S. Mi Lee and Y. Hee Lee, “Hydrogen storage in single walled carbon nanotubes”, Appl. Phys. Lett., 76 (20), 2877 (2000).
    20. Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu , “Hydrogen storage in aligned carbon nanotubes”, Appl. Phys. Lett.,78 ,2128 (2001).
    21. W. Qikun, Z. Changchun, L. Weihua, “Hydrogen storage by carbon nanotube and their films under ambient pressure”, nInternational Journal of Hydrogen Energy, 27, 497 (2002).
    22. S. J. Tans, Alwin R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393, 49 (1998).
    23. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett.,73 (17), 2447 (1998).
    24. P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation, and electronic devices”, Appl. Sur. Sci., 141, 201 (1999).
    25. M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, “Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties”, Appl. Phys. Lett., 77 (24), 4037 (2000).
    26. B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes and beyond”, American Scientist, 85, 324 (1997).
    27. P. Calvert, “Strength in disunity”, Nature, 357, 356 (1992).
    28. L. Jin, C. Bower, and O.Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73, 1197 (1998).
    29. David A. Britz, Andrei N. Khlobystov, Kyriakos Porfyrakis, Arzhang Ardavan, G. Andrew D. Briggs, “Chemical reactions inside single-walled carbon nano test-tubes”, Chem. Commun., 1, 37 (2005).
    30. J. Wei, H. Zhu, D. Wu, B. Weib, “Carbon nanotube filaments in household light bulbs”, Appl. Phys. Lett., 84, 4869 (2003).
    31. H. Kanzow, A. Ding, “Formation mechanism of single-wall carbon nanotubes on liquid-metal particles”, Phys. Rev. B, 60, 11180 (1999).
    32. A. Gorbunov, O. Jost, W. Pompe, A. Graff, “Solid–liquid–solid growth mechanism of single-wall carbon Nanotubes”, Carbon, 40, 113 (2002).
    33 J. W. Ward, B.Q. Wei, P.M. Ajayan, “Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane”, Chem. Phys. Lett. 376, 717 (2003).
    34. H. T. Ng, B. Chen, J. E. Koehne, A. M. Cassell, J. Li, J. Han, M. Meyyappan, “Growth of Carbon Nanotubes: A Combinatorial Method To Study the Effects of Catalysts and Underlayers”, J. Phys. Chem. B 107, 8484 (2003).
    35. A. C. Wright, Y. Xiong, N. Maung, S.J. Eichhornb, R.J. Young, “The influence of the substrate on the growth of carbon nanotubes from nickel clusters—an investigation using STM, FE-SEM, TEM and Raman spectroscopy“, Materials Science and Engineering C, 23, 279 (2003).
    36. T. de los Arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen, D. Mathys, “The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth ”, J. Phys. Chem. B, 108, 7728 (2004).
    37. T. de los Arcos , M. G. Garnier , P. Oelhafen, D. Mathys, J. W. Seo, C. Domingo , “Strong influence of buffer layer type on carbon nanotube characteristics”, Carbon, 42, 187 (2004).
    38. L. Delzent, B. Chen, A. Cassell, R. Stevens, C. Nguyen, M. Meyyappan, “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth ”, Chem. Phys. Lett. 348, 368 (2001).
    39. R. Seidel, G. S. Duesberg, E. Unger, A. P. Graham, M. Liebau, F. Kreupl, “Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600℃ and a Simple Growth Model”, J. Phys. Chem. B 108, 1888 (2004).
    40. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst, Nano Lett. 3, 731 (2003).
    41. R. G. Lacerda, A. S. Teh, M. H. Yang, K. B. K. Teo, N. L. Rupesinghe, S. H. Dalal, “Growth of high-quality single-wall carbon nanotubes without amorphous carbon formation”, Appl. Phys. Lett. 84, 269 (2004).
    42. R. Seidel, M. Liebau, G. S. Duesberg, F. Kreupl, E. Unger, A. P. Graham, “In-Situ Contacted Single-Walled Carbon Nanotubes and Contact Improvement by Electroless Deposition”, Nano Lett. 3, 965 (2003).
    43. A. M. Cassell, J. A. Raymakers, J. Kong, H. Dai, “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 103, 6484 (1999).
    44. J. E. Herrera, L. Balzano, A. Borgna, W. E. Alvarez, D. E. Resasco, “Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation”, J. Catalysis, 204, 129 (2001).
    45. Y. J. Yoona, J. C. Baea, H. K. Baika, S. J. Chob, S. J. Leec, K. M. Song, “Nucleation and growth control of carbon nanotubes in CVD process”, Phys. B, 323, 318 (2002).
    46. H. Cui, G. Eres, J.Y. Howe, A. Puretkzy, M. Varela, D.B. Geohegan, D.H. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition”, Chem. Phys. Lett. 374, 222 (2003).
    47. S. Tang, Z. Zhong, Z. Xiong, L. Sun, L. Liu, J. Lin, “Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts ”, Chem. Phys. Lett. 350, 19 (2001).
    48. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M. S. Dresselhaus, “Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering”, Phys. Rev. Lett. 86, 1118 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE