簡易檢索 / 詳目顯示

研究生: 呂奇恩
Lu, Chi-En
論文名稱: 磁流變效應磁性高分子複合材料於觸覺感測器之應用
Implementation of high sensitivity stretchable MEMS tactile sensor using magneto-rheological (MR) effect enhancement polymer composite
指導教授: 方維倫
Fang, Wei-Leun
口試委員: 胡志帆
Hu, Chih-Fan
許富明
Hsu, Fu-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 117
中文關鍵詞: 磁流變效應觸覺感測器可拉伸可撓式大面積陣列
外文關鍵詞: magneto-rheological effect, tactile sensor, stretchable, flexible, large area sensor array
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出應用於機器人系統之中,作為機器人皮膚的可拉伸大面積陣列式觸覺感測器,本研究使用此方法能夠讓材料具有以下優點:1. 低粉末濃度可以讓材料擁有較高成分的高分子可撓特性,解決元件易脆的問題;2. 材料在電阻上有異向性,可避免感測單元間的耦合,進而能產生觸覺圖像;3. 在相同粉末濃度之下,透過磁流變效應增加材料對於正向力的感測靈敏度;4. 能夠解決高粉末濃度衍生的製造問題。
    本研究在保有微機電技術之批量化優勢,結合傳統機械加工製造方法,所提出元件,其特色包含:對稱的結構設計,且導電電極內嵌於感測膜之中,接近材料的應力中性軸,減少撓曲時的應變數值;最後是元件最外層的PDMS,其主要所具有的功能包含:1. 由於PDMS其原生的材料均質特性,可讓兩層的高分子複合材料擁有無明顯接面的好處;2. 同時作為製造時,導電電極的基板,以及在製作完後有保護電極的功能,確保電性穩定輸出至系統中。


    This research proposed a stretchable large-area tactile sensor that can be used as a robot skin in robotic systems. The merit of this device: 1. Low powder weight fraction that solved fragile problem. 2. Electrical resistance anisotropy property, which can generate tactile image. 3. Sensitivity improved by utilizing MR effect. 4. The fabrication problem due to the high powder weight fraction can be solved.
    In this study, while maintaining the advantages of batch fabrication process of MEMS technology, combined with the traditional machining method, the proposed device have the following features: 1. Symmetrical structure design, and the conductive electrodes embedded in the sensing film, close to the material Neutral axis, that can reduce the strain value of electrodes. The outermost layer of the PDMS has the advantages: 1. Due to the homogeneous property of the PDMS, the two layers of PDMS have no obvious interface. 2. Protecting the conductive electrodes from damage.

    摘要……………………………………………………………………...II ABSTRACT…………………………………………………………….III 致謝……………………………………………………………………. IV 目錄…………………………………………………………….............VII 圖目錄…………………………………………………………………..IX 表目錄………………………………………………………………...XIV 第一章 緒論…………………………………………………………1 1-1. 研究動機……………………………………………...1 1-2. 觸覺感測器…………………………………………...3 1-3. 高分子複合材料壓阻效應…………………………...7 1-4. 磁流變流體…………………………………………..9 1-5. 磁性高分子複合材料與可撓性高分子基材製程….11 1-6. 電極製備、結構與電路…………………………….14 1-7 全文架構…………………………………………….16 第二章 元件設計與分析…………………………………………..29 2-1. 感測材料的估算及選用…………………………….30 2-2. 觸覺感測膜設計與模擬分析……………………….33 2-3. 陣列式觸覺感測器設計、模擬與後端電路介紹….36 第三章 製程結果與討論…………………………………………..51 3-1. 製作結果…………………………………………….52 3-2. 製程問題討論及改善……………………………….56 第四章 量測結果與討論…………………………………………..70 4-1. 製程結果初步量測………………………………….71 4-2. 觸覺感測器特性及可靠度量測…………………….73 4-2-1. 可靠度相關量測…………………………….79 4-3. 拉伸及彎曲測試…………………………………….83 第五章 結論與未來工作…………………………………………..99 參考文獻………………………………………………………………102

    [1] Yole Developpement
    [2] Microsoft Corporation
    [3] Apple Inc.
    [4] Google Inc.
    [5] Athos co.
    [6] D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Wong, and J. A. Roger, “Epidermal electronics,” Science, 333, pp 838-843, 2011.
    [7] C. Wang, D. Hwang, Z. Yu, K. Takei, J. Park, T. Chen, B. Ma, and A. Javey, “User-interactive electronic skin for instantaneous pressure visualization,” Nature materials, 12, pp 899-904, 2013.
    [8] N. Lu, C. Lu, S. Yang, and J. A. Roger, “Highly sensitive skin mountable strain gauges based entirely on elastomers,” Advanced Functional Materials, 22, pp 4044-4050, 2012.
    [9] Someya’s Lab.
    [10] 陳宏彥, “利用腔體尺寸設計機器人手部觸覺感測器之剪力感測靈敏度,” 清華大學奈米工程與微系統研究所碩士論文, 2016
    [11] Barrette Technology, LLC
    [12] SynTouch Inc.
    [13] Weiss Robotics Co.
    [14] Robotcenter Co.
    [15] M. Tao, J. L. Wen, G. Yu, C. Yong, N. Lin and M. H. Chan, “An integrated MEMS three-dimensional tactile sensor with large force range,” Sensors and Actuators A: Physical, 80, pp 155-162, 2000.
    [16] Y. Zhang, Y. Mukaibo, and T. Maeno, “A multi-purpose tactile sensor inspired by human finger for texture and tissue stiffness detection,” IEEE International Conference on Robotics and Biomimetics, Kunming, China, Dec. 2006, pp 159-164.
    [17] C. C. Wen, and W. Fang, “Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane,” Sensors and Actuators A: Physical, 145, pp 14-22, 2008.
    [18] T. –V. Nguyen, B. –K. Nguyen, H. Takahashi, K. Matsumoto, I. Shimoyama, “High-sensitivity triaxial tactile sensor with elastic microstructurespressing on piezoresistive cantilevers,” Sensors and Actuators A: Physical, 215, pp 167-175, 2014.
    [19] I. Hiroshi, “The future life supported by interactive humanoid,” International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, June, 2015 pp 7-10.
    [20] R. S. Johansson, and J. R. Flanagan, “Coding and use of tactile signals from the fingertips in object manipulation tasks,” Nature Reviews Neuroscience, 10, pp 345-359, 2009.
    [21] Lynette A. Jones, and Susan J. Lederman, Human hand function. Oxford University Press, 2006.
    [22] H. K. Lee, J. Chung, S. Chang, and E. Yoon, “Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors,” Journal of Microelectromechanical Systems, 17, pp 934-942, 2008.
    [23] H. K. Lee, S. Chang, and E. Yoon, “A flexible polymer tactile sensor: Fabrication and modular expandability for large area deployment,” Journal of microelectromechanical systems, 15, pp 1681-1686, 2006.
    [24] M. Y. Cheng, X. H. Huang, and C. W. Ma, “A flexible capacitive tactile sensing array with floating electrodes,” Journal of Micromechanics and Microengineering, 19, 115001, 2009.
    [25] Stefan C. B. Mannsfeld, Benjamin C-K. Tee, Randall M. Stoltenberg, Christopher V. H-H. Chen, Soumendra Barman, Beinn V. O. Muir, Anatoliy N. Sokolov, Colin Reese and Zhenan Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nature materials, 9, pp 859-864, 2010.
    [26] S. B. Lang, and S. Muensit, “Review of some lesser-known applications of piezoelectric and pyroelectric polymers,” Applied Physics A, 85, pp 125-134, 2006.
    [27] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, 13, pp 359-366, 2003.
    [28] R. B. Katragadda, and Y. Xu, “A novel intelligent textile technology based on silicon flexible skins,” Sensors and Actuators A: Physical, 143, pp 169-174, 2008.
    [29] K. Kim, K. R. Lee, W. H. Kim, K. B. Park, T. H. Kim, J. -S. Kim, and J. J. Pak, “Polymer-based flexible tactile sensor up to 32× 32 arrays integrated with interconnection terminals,” Sensors and Actuators A: Physical, 156, pp 284-291, 2009.
    [30] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-hand manipulation in robotics—A review,” Sensors and Actuators A: physical, 167, pp 171-187, 2011.
    [31] G. Canavese, S. Stassi, M. Stralla, C. Bignardi, and C. F. Prri, “Stretchable and conformable metal–polymer piezoresistive hybrid system,” Sensors and Actuators A: Physical, 186, pp 191-197, 2012.
    [32] G. Canavese, M. Lombardi, S. Stassi, and C. F. Pirri, “Comprehensive characterization of large piezoresistive variation of Ni-PDMS composites,” Applied Mechanics and Materials, 110, pp 1336-1344, 2012.
    [33] C. S. Park, J. Park, and D. –W. Lee, “A piezoresistive tactile sensor based on carbon fibers and polymer substrates,” Microelectronic Engineering, 86, pp 1250-1253,2009.
    [34] X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, “Characterizing and patterning of PDMS-based conducting composites,” Advanced Materials, 19, pp 2682-2686, 2007.
    [35] M. Knite, V. Teteris, A. Kiploka, and J. Kaupuzs, “Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials,” Sensors and Actuators A: Physical, 110, pp 142-149, 2004.
    [36] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, 56, pp 2929-2936, 2008.
    [37] S. Stassi, G. Canavese, F. Cosiansi, R. Gazia, and M. Cocuzza, “A tactile sensor device exploiting the tunable sensitivity of copper-PDMS piezoresistive composite,” Procedia Engineering, 47, pp 659-663, 2012.
    [38] S. Stassi, G. Canavese, F. Cosiansi, R. Gazia, C. Fallauto, S. Corbellini, M. Pirola, and M. Cocuzza, “Smart piezoresistive tunnelling composite for flexible robotic sensing skin,” Smart Materials and Structures, 22, pp 125-134, 2013.
    [39] G. Canavese, S. Stassi, C. Fallauto, S. Corbellini, V. Cauda, M. Donato, M. Pitola, and C. F. Pirri, “Stretchable and wearable piezoresistive insole for continuous pressure monitoring,” Key Engineering Materials, 605, pp 474-477, 2014.
    [40] D. Zhou, and H. Wang, “Design and evaluation of a skin-like sensor with high stretchability for contact pressure measurement,” Sensors and Actuators A: Physical, 204, pp 114-121, 2013.
    [41] G. Canavese, S. Stassi, C. Fallauto, S. Corbellini, V. Cauda, V. Camarchia, M. Pirola, C. F. Pirri, “Piezoresistive flexible composite for robotic tactile applications,” Sensors and Actuators A: Physical, 208, pp 1-9, 2014.
    [42] H. Mei, R. Wang, J. Feng, Y. Xia, and T. Zhang, “A flexible pressure-sensitive array based on soft substrate,” Sensors and Actuators A: Physical, 222, pp 80-86, 2015.
    [43] D. –Y. Jeong, J. Ryu, Y. –S. Lim, S. Dong, D. –S. Park, “Piezoresistive TiB 2/silicone rubber composites for circuit breakers,” Sensors and Actuators A: Physical, 149, pp 246-250, 2009.
    [44] M. K. Abyaneh, and S. K. Kulkarni, “Giant piezoresistive response in zinc–polydimethylsiloxane composites under uniaxial pressure,” Journal of Physics D: Applied Physics, 41, pp 135-141, 2008.
    [45] S. Stassi, G. Canavese, V. Cauda, S. L. Marasso, and C. F. Pirri, “Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites,” Nanoscale research letters, 7, pp 327-331, 2012.
    [46] G. R. Ruschau, S. Yoshikawa, and R. E. Newnham, “Resistivities of conductive composites,” Journal of applied physics, 72, pp 953-959, 1992.
    [47] X. W. Zhang, Y. Pan, Q. Zheng, and X. S. Yi, “Time dependence of piezoresistance for the conductor-filled polymer composites,” Journal of Polymer Science part B: polymer physics, 38, pp 2739-2749, 2000.
    [48] N. Ryvkina, I. Tchmutin, J. Vilčáková, M. Pelíšková, and P. Sáha, “The deformation behavior of conductivity in composites where charge carrier transport is by tunneling: theoretical modeling and experimental results,” Synthetic Metals, 148, pp 141-146, 2005.
    [49] D. Bloor, K. Donnelly, P. J. Hands, P. Laughlin, and D. Lussey, “A metal–polymer composite with unusual properties,” Journal of Physics D: Applied Physics, 38, pp 28-51, 2005.
    [50] X. Yang, J. Hu, S. Chen, and J. He, “Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics,” Scientific reports, 6, 30597, 2016.
    [51] A. D. Lantada, P. Lafont, J. L. M. Sanz, J. M. Munoz-Guijosa, and J. E. Otero, “Quantum tunnelling composites: Characterisation and modelling to promote their applications as sensors,” Sensors and Actuators A: Physical, 164, pp 46-57, 2010.
    [52] J. Popplewell, and R. E. Rosensweig, “Magnetorheological fluid composites,” Journal of Physics D: Applied Physics, 29, 2297, 1996.
    [53] J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez. “Magnetorheological fluids: a review,” Soft Matter, 7, pp 3701-3710, 2011.
    [54] A. Ghaffari, S. H. Hashemabadi, and M. Ashtiani, “A review on the simulation and modeling of magnetorheological fluids,” Journal of Intelligent Material Systems and Structures, 26, pp 881-904, 2015.
    [55] J. M. Ginder, L. C. Davis, and L. D. Elie, “Rheology of magnetorheological fluids: models and measurements,” International journal of modern physics b, 10, pp 3293-3303, 1996.
    [56] G. Bossis, S. Lacis, A. Meunier, and O. Volkova, “Magnetorheological fluids,” Journal of magnetism and magnetic materials, 252, pp 224-228, 2002.
    [57] H. V. Ly, F. Reitich, M. R. Jolly, H. T. Banks, K. Ito, “Simulations of particle dynamics in magnetorheological fluids,” Journal of Computational Physics, 155, pp 160-177, 1999.
    [58] E. Climent, M. R. Maxey, and G. E. Karniadakis, “Dynamics of self-assembled chaining in magnetorheological fluids,” Langmuir, 20, pp 507-513, 2004.
    [59] R. C. Bell, E. D. Miller, J. O. Karli, A. N. Vavreck, and D. T. Zimmerman, “Influence of particle shape on the properties of magnetorheological fluids,” International Journal of Modern Physics B, 21, pp 5018-5025, 2007.
    [60] M. R. Jolly , W. B. Jonathan, and J. D. Carlson, “Properties and applications of commercial magnetorheological fluids,” Journal of intelligent material systems and structures, 10, pp 5-13, 1999.
    [61] P. D. Shima, J. Philip, and B. Raj, “Magnetically controllable nanofluid with tunable thermal conductivity and viscosity,” Applied physics letters, 95, 133112, 2009.
    [62] J. Philip, P. D. Shima, and B. Raj, “Nanofluid with tunable thermal properties,” Applied physics letters, 92, 043108, 2008.
    [63] F. –M. Hsu, G. –Y. Liu, and W. Fang, “MEMS structure with tunable stiffness using the magnetorheological effect,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Jan, 2013, pp 9-12.
    [64] F. –M. Hsu, R. Chen, and W. Fang, “Novel tunable optical modulation lens using magnetorheological effect,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Franssico, Jan., 2014, pp 1197-1200.
    [65] B. L. Gray, “A review of magnetic composite polymers applied to microfluidic devices,” Journal of The Electrochemical Society, 161, pp 3173-3183, 2014.
    [66] B. M. Dutoit, P. A. Besse, H. Blanchard, L. Guerin and R. S. Popovic, “High performance micromachined Sm 2 Co 17 polymer bonded magnets,” Sensors and Actuators A: Physical, 77, pp 178-182, 1999.
    [67] J. J. Romero, R. Cuadrado, E. Pina, A. de Hoyos, “Anisotropic polymer bonded hard-magnetic films for microelectromechanical system applications,” Journal of applied physics, 99, 08N303, 2006.
    [68] J. J. Romero, R. Sastre, F. J. Palomares, F. Pigazo, R. Cuadrado, F. Cebollada, A. Hernando, J. M. Gonzalez, “Polymer bonded anisotropic thick hard films for micromotors/microgenerators,” Journal of Iron and Steel Research, International, 13, pp 240-251, 2006.
    [69] M. Feldmann, and S. Buttgenbach, “Novel microrobots and micromotors using Lorentz force driven linear microactuators based on polymer magnets,” IEEE Transactions on Magnetics, 43, pp 3891-3895, 2007.
    [70] O. D. Oniku, B. J. Bowers, S. B. Shetye, N. Wand and D. P. Arnold, “Permanent magnet microstructures using dry-pressed magnetic powders,” Journal of Micromechanics and Microengineering, 23, 075027, 2013.
    [71] T. S. Yang, N. Wang, and D. P. Arnold, “Fabrication and characterization of parylene-bonded Nd–Fe–B powder micromagnets,” Journal of Applied Physics, 109, 07A753, 2011.
    [72] N. Wang, B. J. Bowers, and D. P. Arnold, “Wax-bonded NdFeB micromagnets for microelectromechanical systems applications,” Journal of Applied Physics, 103, 07E109, 2008.
    [73] F. Dumas-Bouchiat, L. F. Zanini, M. Kustov, N. M. Dempsey, R. Grechishkin, K. Hasselbach, and D. Givord, “Thermomagnetically patterned micromagnets,” Applied Physics Letters, 96, 102511, 2010.
    [74] J. Kim, S. E. Chung, S. E. Choi, H. Lee, J. Kim, and S. Kwon, “Programming magnetic anisotropy in polymeric microactuators,” Nature materials, 10, pp 747-752, 2011.
    [75] F. –M. Hsu, W. C. Chen, W. M. Lai, Y. C. Sun, amd W. Fang, “Implementation of single/multi-layer magnetic-anisotropy magnetic polymer composites for magnetic property modulation,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), San Franssico, Jan., 2014, pp 44-47.
    [76] F. –M. Hsu, and W. Fang, “Development of two-stage solidification technology for implementing micro structures with liquid magnetic polymer and solid magnetic anisotropic polymer,” Journal of Micromechanics and Microengineering, 24, 095024, 2014.
    [77] J. J. Wang, M. Y. Lin, H. Y. Liang, R. Chen, and W. Fang, “Piezoresistive nanocomposite rubber elastomer for stretchable MEMS sensor,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, Jan., 2016, pp 550-553.
    [78] J. J. Wang, C. E. Lu, J. L. Huang, R. Chen, and W. Fang, “Nanocomposite rubber elastomer with piezoresistive detection for flexible tactile sense application,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, Jan., 2017, pp 720-723.
    [79] C. Cho, and Y. Ryuh, “Fabrication of flexible tactile force sensor using conductive ink and silicon elastomer,” Sensors and Actuators A: Physical, 237, pp 72-80, 2016.
    [80] K. J. Lee, K. A. Fosser, and R. G. Nuzzo, “Fabrication of Stable Metallic Patterns Embedded in Poly (dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on-a-Chip Device Patterning,” Advanced Functional Materials, 15, pp 557-566, 2005.
    [81] S. H. Tan, N. T. Nguyen, Y. C. Chua, and T. G. Kang, “Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel,” Biomicrofluidics, 4, 032204, 2010.
    [82] B. J. Kim, and E. Meng, “Review of polymer MEMS micromachining,” Journal of Micromechanics and Microengineering, 26, 013001, 2015.
    [83] S. P. Lacour, S. Wagner, Z. Huang, Z. Suo, “Stretchable gold conductors on elastomeric substrates,” Applied physics letters, 82, pp 2404-2406, 2003.
    [84] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature, 393, pp 146-149, 1998.
    [85] W. Fang, H. Y. Chu, W. K. Hsu, T. W. Cheng, and N. H. Tai, “Polymer-Reinforced, Aligned Multiwalled Carbon Nanotube Composites for Microelectromechanical Systems Applications,” Advanced materials, 17, pp 2987-2992, 2005.
    [86] Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, and S. Curran, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano letters, 6, pp 413-418, 2006.
    [87] C. M. Lin, L. Y. Lin, and W. Fang, “Monolithic integration of carbon nanotubes based physical sensors,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, Jan., 2010, pp 55-58.
    [88] K. S. Lim, W. J. Chang, Y. M. Koo, and R. Bashir, “Reliable fabrication method of transferable micron scale metal pattern for poly (dimethylsiloxane) metallization,” Lab on a Chip, 6, pp 578-580, 2006.
    [89] A. C. Siegel, D. A. Bruzewicz, D. B. Weibel, and G. M. Whitesides, “Microsolidics: fabrication of three-dimensional metallic microstructures in poly (dimethylsiloxane),” Advanced Materials, 19, pp 727-733, 2007.
    [90] C. –X. Liu, and J. –W. Choi, “Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing,” Journal of Micromechanics and Microengineering, 19, 085019, 2009.
    [91] W. L. Sung, C. L. Cheng, C. Hong, and W. Fang, “Recoverable/stretchable polymer spring with embedded CNTs electrical routing for large-area electronic applications,” International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, June, 2015 pp 1346-1349.
    [92] Y. Wang, G. Liang, D. Mei, and Z. Chen, “Flexible Tactile Sensor Array Mounted on the Curved Surface: Analytical Modeling and Experimental Validation,” Journal of Microelectromechanical Systems, 26, pp 1002-1011, 2017.
    [93] B. D. Cullity, and C. D. Graham, Introduction to magnetic materials. 2nd Ed., Hoboken, John Wiley & Sons, 2011.
    [94] R. Ohtsuki, T. Sakamaki, and S. Tominaga, “Analysis of skin surface roughness by visual assessment and surface measurement,” Optical review, 20, pp 94-101, 2013.
    [95] http://www.vale.com/PT/business/mining/nickel/NickelProducts/

    QR CODE