簡易檢索 / 詳目顯示

研究生: 謝承燁
Hsieh, Cheng-Yeh
論文名稱: 探討國中生在數學教科書中數學素養題的解題表現與感受
Investigating Junior High School Student’s Problem Solving Performance and Perceptions of the Mathematical Literacy Problems in the Textbook
指導教授: 林勇吉
Lin, Yung-Chi
口試委員: 秦爾聰
陳正忠
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 123
中文關鍵詞: 數學教科書數學素養PISA2022解題表現感受
外文關鍵詞: mathematicaltextbooks, mathematicalliteracy, PISA2022, problemsolvingperformance, perceptions
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 教育部頒布的108課綱中,素養導向教學已變成教與學的一大重點,因此學校使用的數學教科書常有數學素養題,可見數學素養的重要性,但教科書內的數學素養題是否真的能讓學生產生數學素養呢?學生面對這些數學素養題的表現又是如何?學生在寫數學素養題時的想法是什麼?對此我們產生一些疑問。故本研究欲從數學教科書中找尋數學素養題,給學生施測後,再從學生的作答與反應中,試圖探究學生在數學素養題的解題過程與感受為何。
    本研究採用紙筆測驗,測驗時間為一節課,測驗題目為數學教科書的數學素養題。測驗後,會以半結構式的質性訪談方式,詢問學生作答時的想法,最後分析學生展現的數學素養與對數學素養題的態度、想法。
    本研究採立意取樣找尋施測對象,尋得施測對象為新竹市的龍龍國中。施測班級為國二班級5個班,共120人。我們採用三角檢證法找尋三位研究協助者,研究者找尋指導教授、龍龍國中的王老師、龍龍國中的曾同學作為本研究的協助者,一同討論題目的制定與流程。
    研究結果發現:一、一般數學測驗越高分的學生,數學素養題也會越高分。二、學生對數學素養題的感受會與學生的數學程度成正相關,但各班對數學素養題的感受與數學素養題分數的高低無關。三、學生在碰到完全不用計算、可以使用計算機的題目時,分數會較高。學生在遇到題目冗長、沒看過的題目、有圖表的題目等,分數會較低。四、120施測對象中,有42位學生喜歡數學素養題,他們覺得數學素養題充滿挑戰、能夠與生活結合,是很棒的題目。64位學生不喜歡數學素養題,他們認為題目很難、題目冗長。
    本研究建議:一、未來的研究可以將數學素養題應用在其他年級、資優班上。二、未來的研究可以使用不同類型的數學素養題來檢測學生的數學素養能力。三、學校能夠使用施測結果了解學生的學習風氣與想法。本研究的研究限制為無法將結果同時類推至其他班級、學校、年級。


    The Ministry of Education launched syllabus in 2019, the contents were about that the literacy-oriented teaching has become a major keypoint in teaching and learning, because of this reason, the mathematical textbooks usually have the mathematical literacy problems in school, so we can see the importance of mathematical literacy. However, could the mathematical literacy problems make students product the mathematical literacy in the mathematical textbooks? How did students perform on these mathematical literacy problems? What were the feelings when students were doing the mathematical literacy problems? We have some doubts about this part.
    Therefore, we began with finding the mathematical literacy problems in mathematical textbooks, then we gave the test to students. We tried to inquiry what were the solving processes and feelings from the answers and responses of students, when they were doing the mathematical literacy problems.
    We adopted a paper-and-pencil test, the test time is whole class, the mathematical literacy problems in the test were from the mathematical textbooks. After the test, we would use semi-structured qualitative interviews, to ask students their thoughts during the test. Finally, we analyzed what students performed the mathematical literacy, the attitudes and thoughts from the mathematical literacy problems.
    We used purposive sampling to select samples, who have studied at Rong-rong junior school in Hsinchu city, Taiwan. We selected five classes of grade eight, the total amounts of students are one hundred and twenty students. We used triangulation to find three helper of this research, we then selected advisor, Mr. Lin ,and the math teacher, Ms. Wang, who is from Rong-rong junior school, and the student, Mr. Tseng, who is also from Rong-rong junior school. They helped us establish the problems and procedures of the test.
    As the result, we find four results. First of all, the higher scores the students got in normal mathematical test, they will also got higher scores in mathematical literacy test. Secondly, positive relationship is between the feelings of mathematical literacy problems from students and the mathematical levels of students, but no relationship is between the feelings of mathematical literacy problems from each class and the scores of mathematical literacy problems. Thirdly, when the students encounter the problems, they do not need to calculate, the problems they allowed to use calculator, their scores are higher. When the students encounter the longer problems, the problems they have not encountered, the problems with charts, their scores are lower. Eventually, of 120 students, 42 students like mathematical literacy problems, they think mathematical literacy problems have challenges, and mathematical literacy problems can be connected with real life, they have good feelings of the mathematical literacy problems. 64 students dislike mathematical literacy problems, they think mathematical literacy problems are too difficult, and the narrative of the problems are too long.
    We have three suggests. First, the future research could apply mathematical literacy problems to other grades, advanced classes. Second, the future research could use different types of mathematical literacy problems to examine the students mathematical literacy abilities. Third, the school could use the results of the test to know the learning atmosphere and feelings.
    The limitaion of this research is that we can not use the results to explain other classes, schools, and grades at the same tine.

    第一章 緒論 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 名詞釋義 4 第二章 文獻探討 第一節 數學素養 5 第二節 數學教科書 22 第三節 數學解題 24 第三章 研究方法 第一節 研究設計 33 第二節 研究對象與研究參與者 33 第三節 研究工具 34 第四節 資料蒐集與分析 39 第五節 研究流程 40 第四章 研究結果與分析 第一節 學生在數學素養題的量化分析與解題表現 42 第二節 學生對數學素養題的感受 78 第三節 數學素養題與感受之間的分析 82 第五章 結論與建議 第一節 研究結果 84 第二節 研究建議與限制 87 參考文獻 中文部分. 89 英文部分 91 附錄 附錄1:數學素養題測驗測驗說明 96 附錄2:數學素養題測驗題目第1題 97 附錄3:第1題第1小題的評分標準 98 附錄4:第1題第2小題的評分標準 99 附錄5:數學素養題測驗題目第2題 100 附錄6:第2題的評分標準 101 附錄7:數學素養題測驗題目第3題 102 附錄8:第3題的評分標準 103 附錄9:數學素養題測驗題目第4題 104 附錄10:第4題第1小題的評分標準 105 附錄11:第4題第2小題的評分標準 106 附錄12:第4題第3小題的評分標準 107 附錄13:數學素養題測驗題目第5題 108 附錄14:第5題第1小題的評分標準 109 附錄15:第5題第2小題的評分標準 110 附錄16:數學素養題測驗題目第6題 111 附錄17:第6題第1小題的評分標準 112 附錄18:第6題第2小題的評分標準 113 附錄19:數學素養題測驗題目第7題 114 附錄20:第7題第1小題的評分標準 115 附錄21:第7題第2小題的評分標準 116 附錄22:數學素養題測驗題目第8題 117 附錄23:第8題第1小題的評分標準 118 附錄24:第8題第2小題的評分標準 119 附錄25:第8題第3小題的評分標準 120 附錄26:數學素養題情意測驗 121 附錄27:兩位學生的訪談資料 122

    中文部分:
    左台益、李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期
    刊,63(4),29-58。
    左台益、李健恆、潘亞衛、呂鳳琳(2018)。臺灣、新加坡及巴西數學教科書中
    數學素養內涵之比較──以畢氏定理為例。教科書研究,11(3),33-62。
    李心儀(2016)。不同解題歷程模式中的回顧。臺灣教育評論月刊,5(8),157-
    161。
    李勇輝(2017)。學習動機、學習策略與學習成效關係之研究-以數位學習為例。
    經營管理學刊,14,68-86。
    李國偉、黃文璋、楊德清、劉柏宏(2013)。教育部提升國民素養實施方案—數
    學素養研究計劃結案報告。
    吳正新(2019)。數學素養導向評量試題研發策略。中等教育,70(3)。
    林福來、單維彰、李源順、鄭章華(2013)。「十二年國民基本教育領域綱要內容
    前導研究」整合型研究子計畫三:十二年國民基本教育數學領域綱要內容之前導研究報告。新北市:國家教育研究院。
    胡炳生(1995)。數學解題思維方法。台北市:九章出版社。
    張鎮華(2018b)。數學學科知識也是數學素養(數學素養系列之 3)。高中數學
    學科中心電子報,第123期,2017.06.28。
    教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:作者。
    教育部辭典(2021)。取自
    https://dict.revised.moe.edu.tw/dictView.jsp?ID=145401&q=1&word=%E7%B4%A0%E9%A4%8A
    陳玟樺(2022)。芬蘭小學數學教科書國際教育之內容分析—以五年級「選修題
    材」單元為例。教科書研究,15(1),1-41。
    陳英豪(2016)。國小一般智能資賦優異學生數學解題能力之相關因素探討。特
    殊教育與輔助科技學報,9,35-68。
    徐偉民(2017)。小學數學教科書使用之探究。教科書研究,10(2),99-132。
    國家教育研究院(2018)。十二年國民基本教育課程綱要。
    游智達(2016)。數學素養之意涵與其變遷。國家教育研究院教育脈動電子期
    刊,5,1-18。
    葉秀玲、徐偉民、張國綱(2021)。數學探究教學對學生根號求值的概念發展及
    學習態度的影響。臺灣數學教師,42(2),56-83 doi: 10.6610/TJMT.202110_42(2).0004
    單淮康、楊肅健、林秋斌(2020)。課前與課中翻轉教室對自律學習之影響︰以
    國中七年級數學為例。教育傳播與科技研究,122,39-55。
    單維彰(2018)。論知行識作為素養培育的課程架構—以數學為例。台灣教育評
    論期刊,7(2),101-106。
    楊瑞智、曾婉菁(2015)。國小學童配對數學解題之研究。國教新知,62(3),
    12-29。
    楊德清(2018)。未來中小學數學教科書發展新方向之我見我思。台灣教育評論
    期刊,7(10),151-155。
    詹勳國、李政和(2021)。八年級生使用敘事說明學習數學概念之研究-屏東縣某
    國中為例。科學教育月刊,436,11-30。
    劉柏宏(2016)。從數學與文化的關係探討數學文化素養之內涵─理論與案例分
    析。台灣數學教育期刊,3(1),55-83。
    鄭章華(2018)。評介素養導向的數學教科書—脈絡數學。[Introducing a Reform-
    Based Textbook: Mathematics in Context]。教科書研究,11(3),87-99。
    鄭章華(2020)。從課程研修探討我國數學教育之問題。台灣教育研究期刊,
    1(1),177-192。
    蔡清田、陳廷興(2013)。國民核心素養之課程變化。課程與教學季刊,
    16(3),59-78。
    謝佳叡、唐書志(2017)。探究九年級生推論形式之邏輯結構的建構與轉化。臺
    灣數學教育期刊,4(2),1-32。 doi: 10.6278/tjme.20170914.001
    謝涵、許雅筑、陳政見(2016)。後設認知策略在國中學習障礙學生數學解題之
    運用實例分析。雲嘉特教,24,18-31。

    英文部分:
    Aan Hendroanto, Afit Istiandaru, Nisa Syakrina, Fariz Setyawan, Prahmana, R., &
    Hidayat, A. (2018). How Students Solves PISA Tasks: An Overview of Students Mathematical Literacy. International Journal on Emerging Mathematics Education (IJEME) (Vol. 2, No. 2, pp. 129-138).
    Alejandro Salado, Chowdhury, A., & Anderson Norton (2019). Systems thinking and
    mathematical problem solving. School Science and Mathematics.
    Ali M. Al-Zoubi, & Suleiman, L. (2021). Flipped Classroom Strategy Based on
    Critical Thinking Skills: Helping Fresh Female Students Acquiring Derivative Concept. International Journal of Instruction, 14(2).
    Alnizami, R., Thorp, A., & Sztajn, P. (2019). Discourse in Classrooms of PD
    Participants. Proceedings of the 43rd Conference of the International Group for the Psychology of Mathematics Education. (Vol. 2, pp. 1-43). Pretoria South Africa.
    Amalia, E., Surya, E., & Syahputra, E. (2017). The effectiveness of using problem
    based learning (PBL) in mathematics problem solving ability for junior high school students. International Journal of Advance Research and Innovative Ideas in Education, 3(2). http://doi.org/16.0415/IJARIIE-4659
    Arnon, I., Cottrill, J., Dubinsky, E., Oktaç, A., Roa Fuentes, S., Trigueros, M., &
    Weller, K. (2014). APOS theory: A framework for research and curriculum development in mathematics education. New York, NY: Springer. doi:10.1007/978-1-4614-7966-6
    Asiala, M., Brown, A., DeVries, D., Dubinsky, E., Mathews, D., & Thomas, K. (1996).
    A framework for research and curriculum development in undergraduate mathematics education. In Research in Collegiate mathematics education II. CBMS issues in mathematics education (Vol. 6, pp. 1–32). Providence, RI: American Mathematical Society.
    Balagtas, M. (2021). Alignment of the Philippine Mathematics Teacher
    Education Curriculum with the Programme for International Student Assessment. European Journal of Mathematics and Science Education, 2(2), 145-161.
    Bidasari, F. (2017). Pengembangan soal matematika model pisa pada konten quantity
    untuk mengukur kemampuan pemecahan masalah matematika siswa sekolah menengah pertama. Jurnal Gantang, 2(1), 63-77. https://doi.org/10.31629/jg.v2i1.59
    Blum, W. (2015). Quality teaching of mathematical modelling: What do we know,
    what can we do? In J. S. Cho (Ed.), Proceedings of the 12th International Congress on Mathematical Education (pp. 73-96). Springer.
    Bolstad, O. (2021). Lower secondary students’ encounters with mathematical literacy.
    Mathematics Education Research Journal.
    Çalisici, H. (2018). Middle school students' learning difficulties in the ratio-proportion
    topic and a suggested solution:" envelope technique". Universal Journal of Educational Research, 6, 1848-1855.
    de Lange, J. (2003). Mathematics for literacy. In B. L. Madison & L. A. Steen (Eds.),
    Quantitative literacy: Why numeracy matters for schools and colleges
    (pp. 75-89). Princeton, NJ: National Council on Education and Disciplines.
    de Lange, J. (2006). Mathematical literacy for living from OECD-PISA perspective.
    Tsukuba Journal of Educational Study in Mathematics, 25(1), 13-35.
    Elsayed, A., Abbas, R., & Abdou, M. (2021). Can an Educational Activity Program
    Based on Feuerstein’s Program and Gardner’s Theory Increase Excellence and Creativity in Math in Omani Students? FWU Journal of Social Sciences, 15(3), 1-26.
    Fan, Zhu, & Miao (2013). Textbook research in mathematics education: development
    status and directions. ZDM Mathematics Education. 45: 633-646.
    Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.),
    The nature of intelligence. (pp. 231-235) NJ: Lawrence Erlbaum. Associates.
    Gerald A. Goldin (2000). Affective Pathways and Representation in Mathematical
    Problem Solving. Mathematics thinking and learning, 2(3), 209–219.
    Grootenboer, P., & Marshman, M. (2015). Mathematics, affect and learning: Middle
    school students’ beliefs and attitudes about mathematics education. Springer.
    Hadi, S., Retnawati, H., Munadi, S., Apino, E., & Wulandari, N. (2018). The
    difficulties of high school students in solving higher-order thinking skills problems. Problems of Education in the 21st Century. 76(4), 520-532.
    Haim Shaked, & Chen Schechter (2017). Definitions and Development of Systems
    Thinking. Systems Thinking for School Leaders. (pp. 9-20).
    Hana Kang, & Leland Cogan (2022). The Differential Role of Socioeconomic Status in
    the Relationship between Curriculum-Based Mathematics and Mathematics Literacy: the Link Between TIMSS and PISA. International Journal of Science and Mathematics Education, 20: 133–148. https://doi.org/10.1007/s10763-020-10133-2
    Hayes, M. L. (2019). 2018 NSSME+: Status of high school mathematics. Horizon
    Research.
    Hidayat, W., Wahyudin, W., & Prabawanto, S. (2018). The mathematical
    argumentation ability and adversity quotient (AQ) of pre-service mathematics teacher. Journal on Mathematics Education, 9(2), 239-248. https://doi.org/10.22342/jme.9.2.5385.239-248
    Højgaard, T. (2009). Competencies, skills, and assessment. In R. Hunter, B. Bicknell,
    & T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd annual
    conference of the Mathematics Education Research Group of Australasia
    (Vol. 1, pp. 225-231).
    Jazuli, A., P. Setyosari, & Sulthon, K. (2017). Improving conceptual understanding
    and problem-solving in mathematics through a contextual learning strategy. Global Journal of Engineering Education, 19(1), 49-53.
    Julia L. Hill, Margaret L. Kern, Wee Tiong Seah (佘伟忠), & Jan van Driel (2021).
    Feeling Good and Functioning Well in Mathematics Education: Exploring Students’ Conceptions of Mathematical Well-Being and Values. ECNU Review of Education, 4(2), 349–375.
    Krulik, S., & Rudnick, J. (1995). The new sourcebook for teaching reasoning and
    problem solving in junior and seniorhigh school. New York, NY: Allyn & Bacon.
    Lester, F. K. (1980). Research on mathematical problem solving. In R. J. Shumway
    (Ed). Research in mathematics education (pp. 286-323). Reston, VA: NCTM.
    Lester, F. K. (1985). Methodological consideration in research on mathematical
    problem solving instruction. In E. A. Silver(Ed). Teaching and learning mathematical problem solving: Multiple research perspectives. Hillsdale, NJ: Lawence Erlbaum Associates.
    Liebendörfer, M., & Ostsieker, L. (2014). Mathematik als Werkzeug: Sicht- und
    Arbeitsweisen von Studierenden am Anfang ihres Mathematikstudiums [Mathematics as tool: Students’ views and working habits]. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen – Using Tools for Learning Mathematics and Statistics (pp. 453–462). Wiesbaden, Germany: Springer.
    Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in
    mathematics education. Springer International Publishing.
    Mayer R. (1992). Thinking, problem solving, cognition. (pp.387-414). New York:
    W. H. Freeman and Company.
    Niss, M. (2003). Mathematical competencies and the learning of mathematics: The
    Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd
    mediterranean conference on mathematical education (pp. 115-124). Athens,
    Greece: Hellenic Mathematical Society.
    Niss, M., & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning
    Ideas and inspiration for the development of mathematics teaching and
    learning- in Denmark. Roskilde, Denmark: Roskilde University. Palmerston
    North, NZ: MERGA.
    OECD. (2018). PISA 2021 Mathematics Strategic Direction Paper.
    OECD. (2018). PISA 2021 Mathematics Framework.
    O’Halloran, K., Beezer, R., & Farmer, D., (2018) A new generation of mathematics
    textbook research and development, ZDM (2018) 50:863-879 https://doi.org/10.1007/s11858-018-0959-8
    Ojose, B. (2011). Mathematics literacy: Are we able to put the mathematics we learn
    into everyday use? Journal of Mathematics Education, 4(1), 89-100.
    Op’ T Eynde, P., De Corte, E., & Verschaffel, L. (2006). “Accepting emotional
    complexity”: A socioconstructivist perspective on the role of emotions in the mathematics classroom. Educational Studies in Mathematics, 63(2), 193–207. doi:10.1007/s10649-006-9034-4.
    Op’ T Eynde, P., De Corte, E., & Verschaffel, L. (2007). Students’ emotions: A key
    component of selfregulated learning? In P. A. Schutz & R. Pekrun (Eds.), Emotion in education (pp. 185–204). Burlington, MA: Academic Press.
    Polya, G. (1945). How to solve it. New Jersey: Princetion University Press.
    Polya, G. (2004). How to solve it: A new aspect of mathematical method (Second).
    New Jersey: Princeton University Press.
    Pugalee, D. K. (1999). Constructing a model of mathematical literacy. The Clearing
    House, 73(1), 19-22.
    Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic
    Press.
    Son, J. W., & Diletti, J. (2017). What can we learn for textbook analysis? In J. W. Son,
    T. Watanabe, & J. J. Lo (Eds.), What matters? Research trends in international comparative studies in mathematics education (pp. 3-32). Cham, Switzerland: Springer.
    Stylianou, D. A., Blanton, M. L., & Rotou, O. (2015). Undergraduate students’
    understanding of proof: Relationships between proof conceptions, beliefs, and classroom experiences with learning proof. International Journal of Research in Undergraduate Mathematics Education, 1(1), 91–134.
    Tandiseru, S. (2015). The Effectiveness of Local Culture-Based Mathematical
    Heuristic-KR Learning towards Enhancing Student’s Creative Thinking Skill. Journal of Education and Practice, 6(12).
    Widodo1, S., Ibrahim, Hidayat, W., Maarif, S., & Sulistyowati, F. (2021). Development
    of mathematical problem solving tests on geometry for junior high school students. Jurnal Elemen, 7(1), 221-231. DOI: 10.29408/jel.v7i1.2973. http://e-journal.hamzanwadi.ac.id/index.php/jel
    Woo, P., Shahril, A. M., Azmi, E., & Rosli, H. (2018). Interactive Learning Online: A
    Case Study of Front Office Teaching and Learning in Higher Learning
    Institution in Malaysia. International Journal of Academic Research in
    Business and Social Sciences, 8(15), 201-211.

    QR CODE