研究生: |
曾駿逸 Jiun-Yi Tseng |
---|---|
論文名稱: |
白金奈米晶粒於金屬-氧化物-半導體結構中對非揮發性懸浮閘極記憶體應用之研究 A Study of Pt Nanocrystals in Metal-Oxide-Semiconductor Structures for Nonvolatile Floating Gate Memory Applications |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 167 |
中文關鍵詞: | 非揮發性記憶體 、白金奈米晶粒 、懸浮閘極 |
外文關鍵詞: | non-volatile memory, Pt nanocrystal, floating gate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
存在於金屬-氧化物-半導體(MOS)結構中的白金奈米晶粒(Pt nanocrystal) 對於非揮發性(nonvolatile)懸浮閘極(floating gate)記憶體的應用在本論文中有詳細地探討。為了製造此種新型奈米尺寸的非揮發性記憶體,一種新穎又簡單且具有再現性的製程方法(利用白金氧化物(PtOx)在高溫的還原特性)已成功地被開發出來。利用此製程所形成的白金奈米晶粒不但具有均勻分佈於基材(SiO2)且擁有良好的絕緣等特性;此外白金奈米晶粒之尺寸集中於2-3 nm且同時擁有極高的奈米晶粒密度約為2.16*1012 cm-2完全符合此新型奈米尺寸非揮發性記憶體的要求。在本研究中,由於電子(electron)或電洞(hole)儲存於白金奈米晶粒所造成電容-電壓曲線(C-V curve)的遲滯(hysteresis)現象清楚地被觀察到,亦實際證明此新型奈米記憶體對於非揮發性元件應用之可行性。同時在本研究中,我們也發現儲存電荷的機制主要有兩種;其一為藉由基板注入(sbustrate injection),另一個機制乃是藉由gate oxid內部缺陷電荷注入(defect injection)所造成。這兩種機制同時存在且相互競爭,在較薄的tunnel oxide下,基板注入變成主要的儲存電荷機制,反之則為缺陷電荷注入。而在儲存電荷(charge storage)與保存電荷(retention)的記憶特性方面,藉由基板注入的機制相較於缺陷電荷注入的機制穩定且有效率。在本研究中,我們亦探討不同真空熱處理時間對此非揮發性記憶元件之特性的影響。研究中發現,較長的熱處理時間(≧ 25 min)對於gate oxide內部缺陷的回復(recovery)與促進白金奈米晶粒良好的絕緣性有很大的幫助,並進而改善且降低側向漏電(lateral charge loss)與缺陷電荷注入(defect injection)的效應。因此較長時間熱處理的元件擁有較好的儲存電荷與保存電荷之記憶特性。再者,根據電導-電壓曲線(G-V curve)特性的結果可知,由於庫倫阻塞效應(Coulomb blockade effect)所造成的室溫巨觀單電子傳輸(macroscopic single-electron transfer)行為存在於此金屬-氧化物-半導體結構中的白金奈米晶粒。
Abstract
The nonvolatile memory characteristics of metal-oxide-semiconductor structures containing Pt nanocrystals in SiO2 gate oxide were studied. In this work, a novel, simple and reliable self-assembly process of Pt nanocrystals formation from the reduction of an ultrathin PtOx layer embedded in SiO2 matrix is developed successfully, which is fully compatible with Si technology nowadays. The self-assembled array of uniformly-dispersed and well-isolated Pt nanocrystals with the high spatial density (~2.16×1012 cm-2) and a narrow size distribution in the range of 2-3 nm was obtained by vacuum annealing at 425 ℃ for 25 min. A large hysteresis loop was found in the capacitance-voltage (C-V) relation indicating this significant memory effect. However, two different charge storage mechanisms were found for the Pt nanocrystals in the devices with different tunnel oxide thickness. One is denoted by the counterclockwise hysteresis resulting from substrate injection for the devices made with a thin tunnel oxide layer of 2.5~5.0 nm thick, and the other is characterized by the clockwise hysteresis attributed to the defect injection from the overlaid sputtered gate oxide for the devices having a tunnel oxide layer of 7.5 nm thick. The two mechanisms, substrate injection and defect injection, coexist at the same time but compete with each other. For tunnel oxide being thick enough (≧ 7.5 nm), the substrate injection would be significantly suppressed, and thus the defect injection becomes dominant. A model of defect injection is proposed to explain the clockwise hysteresis. The relatively stable memory characteristics of Pt nanocrystals resulting from substrate injection were also demonstrated. In Chapter 6, the effects of annealing time on the microstructure and electrical characteristics of the self-assembled Pt nanocrystals in SiO2 matrix are clear and significant. For a long enough annealing time, not only the Pt nanocrystals are well isolated and uniformly dispersed, but also the defects in the sputtered oxide are recovered. The superior charge storage and retention characteristics can be obtained due to the small lateral charge loss and the suppression of defect injection. Moreover, according to the gate-voltage dependence of charge storage and the result of the conductance-voltage (G-V) measurement, the macroscopic single-electron transfer due to the Coulomb blockade effect in the MOS device with embedded Pt nanocrystals is successfully demonstrated at room temperature in this research.
REFERENCE
1. T. Hiramoto, “To fill the gap between Si-ULSI and nanodevices”, International Journal of High Speed Electronics and Systems 10 (1), 197(2000).
2. International Technology Roadmap of Semiconductor, 1998 Update, 1999. http://www.semichips.org.
3. Y. Ohkura, Solid State Electronics 33, 1581(1990).
4. K. Yano, T. Ishii, T. Mine, F. Murai, T. Kure, and K. Seki, ISSCC Tech. Dig., p. 344(1998).
5. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377(1996).
6. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358(1998).
7. S. Takagi, J. Koga, and A. Toriumi, IEDM Tech. Dig., 219(1997).
8. B. Prince, “Emerging Memories – Technologies and Trends” by Kluwer Academic Publishers, p. 133(2002).
9. S. Habermehl, R. D. Nasby, and M. J. Rightley, “Cycling endurance of silicon-oxide-nitride-oxide-silicon nonvolatile memory stacks prepared with nitrided SiO2/Si(100) interfaces”, Appl. Phys. Lett. 75, 1122(1999).
10. S. Choi, M. Cho, and J. W. Kim, “Improved metal-oxide-nitride-oxide-silicon-type flash device with high-k dielectrics for blocking layer”, J. Appl. Phys. 94, 5408(2003).
11. C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories”, IEDM Tech. Dig., 613(2003).
12. T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, Symposium on VLSI Technology Digest of Technical Papers, 27(2003).
13. R. Ohba, N. Sugiyama, J. Koga, and S. Fujita, “Silicon nitride trap memory with double tunnel junction”, Symposium on VLSI Technology Digest of Technical Papers, 35(2003).
14. J. H. Kim, I. W. Cho, G. J. Bae, S. S. Kim, K. C. Kim, S. H. Kim, K. W. Koh, N. I. Lee, H. K. Kang, and K. P. Suh, “Highly manufacturable SONOS nonvolatile memory for the embedded SoC solution”, Symposium on VLSI Technology Digest of Technical Papers, 31(2003).
15. H. C. Wann and Chenming Hu, “High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application”, IEEE Electron Device Letters 16(11), 491(1995).
16. M. K. Cho and D. M. Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters 21(8), 399(2000).
17. S. Minami and Y. Kamigaki, “A novel MONOS nonvolatile memory device ensuring 10-year data retention after 107 erase/write cycles”, IEEE Trans. Electron Devices 40(11), 2011(1993).
18. Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a Hafnium oxide charge storage layer”, IEEE Trans. Electron Devices 51(7), 1143(2004).
19. J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices”, Solid State Electronics 45, 113(2001).
20. “Protonic computer memory remembers information when power goes off”, press release of Sandia National Lab., http://www.sandia.gov/media/protonic.htm
21. W. L. Warren, “Protonic nonvolatile field effect transistor memories in Si/SiO2/Si structures”, IEEE Trans. on Nuclear Science 44, 1789(1997).
22. D. M. Fleetwood, “Nonvolatile memory based on mobile protons”, Nonvolatile Memory Technology Conference(1998).
23. T. S. Yoon, J. Y. Kwon, D. H. Lee, and K. B. Kim, “High spatial density nanocrystal formation using thin layer of amorphous Si0.7Ge0.3 deposited on SiO2”, J. Appl. Phys. 87, 2449(2000).
24. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794(2002).
25. L. Guo, E. Leobandung, and S. Y. Chou, “A silicon single-electron transistor memory operating at room temperature”, Science 275, 649(1997).
26. I. Kim, S. Han, K. Han, J. Lee, and H. Shin, “Room temperature single electron effects in a Si nanocrystal memory”, IEEE Electron Device Letters 20(12), 630(1999).
27. H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553(1996).
28. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232(1996).
29. H. Silva, M. K. Kim, A. Kumar, U. Avci, and S. Tiwari, “Few electron memories: finding the compromise between performance, variability and manufacturability at the nano-scale”, IEDM Tech. Dig., 271(2003).
30. M. Saitoh, E. Nagata, and T. Hiramoto, “Large memory window and long charge-retention time in ultranarrow channel silicon floating-dot memory”, Appl. Phys. Lett. 82, 1787(2003).
31. N. Takahashi, H. Ishikuro, and T. Hiramoto, “Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates”, Appl. Phys. Lett. 76, 209(2000).
32. H. Ishikuro and T. Hiramoto, “Influence of quantum confinement effects on single electron and single hole transistors”, IEDM Tech. Dig., 119(1998).
33. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of interface traps on charge retention characteristics in silicon-quantum-dot-based metal-oxide-semiconductor diodes”, Jpn. J. Appl. Phys., Part 1 38, 425(1999).
34. A. Kanjilal, J. Lundsgaard Hansen, P. Gaiduk, and A. Nylandsted Larsen, “Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy”, Appl. Phys. Lett. 82, 1212(2003).
35. D. N. Kouvatsos, V. Loannou-Sougleridis and A. G. Nassiopoulou, “Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing”, Appl. Phys. Lett. 82, 397(2003).
36. K. Das, M. N. Goswami, R. Mahapatra, G. S. Kar, A. Dhar, and H. N. Acharya, “Charge storage and photoluminescence characteristics of silicon oxide embedded Ge nanocrystal trilayer structures”, Appl. Phys. Lett. 84, 1386(2004).
37. T. Kobayashi, T. Endoh, H. Fukuda, S. Nomura, A. Sakai, and Y. Ueda, “Ge nanocrystals in SiO2 films”, Appl. Phys. Lett. 71, 1195(1997).
38. H. Fukuda, S. Sakuma, T. Yamada, and S. Nomura, “Physical and electric properties of Ge-implanted SiO2 films”, J. Appl. Phys. 90, 3524(2001).
39. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers”, Appl. Phys. Lett. 81, 4248(2002).
40. W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, “Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films”, J. Appl. Phys. 89, 2168(2001).
41. Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang, and X. B. Liao, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix”, Appl. Phys. Lett. 81, 4174(2002).
42. W. K. Choi, V. Ng, S. P. Ng, and H. H. Thio, “Raman characterization of germanium nanocrystal in amorphous silicon oxide films synthesized by rapid thermal annealing”, J. Appl. Phys. 86, 1398(1999).
43. S. J. Baik, S. Choi, U-In Chung, and J. T. Moon, “High speed and nonvolatile Si nanocrystal memory for scaled flash technology using highly field-sensitive tunnel barrier”, IEDM Tech. Dig., 545(2003).
44. K. W. Guarini, C. T. Black, Y. Zhang, I. V. Babich, E. M. Sikorski, and L. M. Gignac, “Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly”, IEDM Tech. Dig., 541(2003).
45. R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve, K. Harber, and B. Hradsky, “A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory”, IEDM Tech. Dig., 601(2003).
46. T. Ohzone, T. Matsuda, and T. Hori, “Erase/write cycle test of n-MOSFET’s with Si-implanted gate-SiO2”, IEEE Trans. Electron Devices 43, 1374(1996).
47. G. Puzzilli, D. Caputo, and F. Irrera, “Fast and reliable tunnel programming of nanocrystal nonvolatile memories”, IEEE Trans. Electron Devices 51, 1205(2004).
48. C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8.18.1(2003).
49. C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557(2003).
50. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅰ: device design and fabrication”, IEEE Trans. Electron Devices 49, 1606(2002).
51. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅱ: electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614(2002).
52. M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J-C. Shim, H. Kurino and M. Koyanagi, “New non-volatile memory with extremely high density metal nano-dots”, IEDM Tech. Dig., 553(2003).
53. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, in proceedings of the IEEE, number 8, p. 1248(1997).
54. A. K. Sharma, “Semiconductor memories”, IEEE press, New Jersey, 1997.
55. L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639(2002).
56. V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558(2003).
57. W. K. Choi and W. K. Chim, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 80, 2014(2002).
58. V. Ho, M. S. Tay, C. H. Moey, L. W. Teo, W. K. Choi, W. K. Chim, C. L. Heng, and Y. Lei, “Electrical characterization of a trilayer germanium nanocrystal memory device”, Microelectronic Engineering 66, 33(2003).
59. M. Dai, K. Chen, X. Huang, L. Wu, L. Zhang, F. Qiao, W. Li, and K. Chen, “Formation and charging effect of Si nanocrystals in a-SiNx/a-Si/a-SiNx structures”, J. Appl. Phys. 95, 640(2004).
60. Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, “Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric”, Appl. Phys. Lett. 82, 4708(2003).
61. Q. Wan, N. L. Zhang, W. L. Liu, C. L. Lin, and T. H. Wang, “Memory and negative photoconductivity effects of Ge nanocrystals embedded in ZrO2/Al2O3 gate dielectrics”, Appl. Phys. Lett. 83, 138(2003).
62. Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex”, IEEE Trans. Electron Devices 48, 696(2001).
63. Y.-C. King, T.-J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig., 98(1998).
64. C. Kuo, T.-J. King, and C. Hu, “Direct tunneling RAM (DT-RAM) for high-density memory applications”, IEEE Electron Device Letters 24(7), 475(2003).
65. J. K. Kim. H. J. Cheong, Y. Kim, J. Y. Yi, H. J. Bark, S. H. Bang, and J. H. Cho, “Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals”, Appl. Phys. Lett. 82, 2527(2003).
66. R. Ohba, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEDM Tech. Dig., 313(2000).
67. I. Kim, “Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics”, IEDM Tech. Dig., 111(1998).
68. K. Yano, “Room-temperature single-electron memory”, IEEE Trans. Electron Devices 41, 1628(1994).
69. K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Kure, and K. Seki, “Status of single-electron memories”, IEDM Tech. Dig., 107(1998).
70. T. Baron, P. Gentile, N. Magnea, and P. Mur, “Single-electron charging effect individual Si nanocrystals”, Appl. Phys. Lett. 79, 1175(2001).
71. K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, “Metal-nanoparticle single-electron transistors fabricated using electromigration”, Appl. Phys. Lett. 84, 3154(2004).
72. Y. Inoue and A. Tanaka, “Single-electron tunneling through Si nanocrystals dispersed in phosphosilicate glass thin films”, J. Appl. Phys. 86, 3199(1999).
73. L. Guo, E. Leobanddung, and Stephen Y. Chou, “A room-temperature silicon single-electron metal-oxide-semiconductor memory with nanoscale floating-gate and ultranarrow channel”, Appl. Phys. Lett. 70, 850(1997).
74. K. Matsumoto, Y. Gotoh, T. Maeda, J. A. Dagata, and J. S. Harris, “Room temperature Coulomb oscillation and memory effect for single electron memory made by pulse-mode AFM nano-oxidation process”, IEDM Tech. Dig., 449(1998).
75. Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and K. Murase, “Fabrication method for IC-oriented Si twin-island single-electron transistors”, IEDM Tech. Dig., 123(1998).
76. G. Molas, B. D. Salvo, D. Mariolle, G. Ghibaudo, A. Toffoli, N. Buffet, and S. Deleonibus, “Single electron charging and discharging phenomena at room temperature in a silicon nanocrystal memory”, Solid-State Electronics 47, 1645(2003).
77. T. W. Kim, D. C. Choo, J. H. Shim, and S. O. Kang, “Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam”, Appl. Phys. Lett. 80, 2168(2002).
78. I. Kim, S. Han, H. Kim, J. Lee, B. Choi, S. Hwang, D. Ahn, and H. Shin, “Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics”, IEDM Tech. Dig., 111(1998).
79. T. Futatsugi, “Silicon single-electron memory using ultra-small floating gate”, Fujitsu Science Technology Journal 34, 142(1998).
80. C. Wasshuber, “A comparative study of single-electron mempries”, IEEE Trans. Electron Devices 45, 2365(1998).
81. D. K. Schroder, Semiconductor material and device characterization 2nd, ed. by John Wiley and Sons, INC., p. 362(1998).
82. D. A. Neamen, Semiconductor Physics and Devices 2nd, p. 419.
83. Y. Taur, and T. H. Ning, Fundamentals of modern VLSI devices, Cambridge University Press, p. 58(1998).
84. Y. Abe, M. Kawamura, and K. Sasaki, “Preparation of PtO and α-PtO2 thin films by reactive sputtering and their electrical properties”, Jpn. J. Appl. Phys., Part 1 38, 2092(1999).
85. Y. Abe, M. Kawamura, and K. Sasaki, “Effects of oxygen gettering and target mode change in the formation process of reactively sputtered Pt oxide thin films”, J. Vac. Sci. Technol. A 18(5), 2608(2000).
86. M. C. Jung, H. D. Kim, M. Han, W. Jo, and D. C. Kim, “X-ray photoelectron spectroscopy study of Pt-oxide thin films deposited by reactive sputtering using O2/Ar gas mixtures”, Jpn. J. Appl. Phys., Part 1 38, 4872(1999).
87. Y. Abe, H. Yanagisawa, and K. Sasaki, “Preparation of oxygen-containing Pt and Pt oxide thin films by reactive sputtering and their characterization”, Jpn. J. Appl. Phys., Part 1 37, 4482(1998).
88. M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin, and L. Samuelson, J. Nanoparticle Research 1, 243(1999).
89. Y. C. Kang, and S. B. Park, J. Aerosol Sci. 26, 1131(1995).
90. M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, “Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices”, Appl. Phys. Lett. 79, 433(2001).
91. P. Normand, E. Kapetanakis, P. Dimitrakis, and D. Tsoukalas, “Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis”, Appl. Phys. Lett. 83, 168(2003).
92. A. G. Nassibian and L. Faraone, “Hysteresis and memory properties of platinum-diffused metal-oxide-silicon structures”, Appl. Phys. Lett. 37, 75(1980).
93. A. G. Nassibian and L. Faraone, “Platinum-induced hysteresis and nonvolatile memory properties in MOS system (PLATMOS)”, IEEE Trans. Electron Devices 27, 1757(1980).
94. A. G. Nassibian, D. Jordan, B. Golja, and J. G. Simmons, “The platinum doped MOST: a memory storage element”, IEEE Trans. Electron Devices 28, 1014(1981).
95. B. Golja and A. G. Nassibian, “C-V hysteresis in metal-oxide-semiconductor structures resulting from Pt doping of the gate oxide”, J. Appl. Phys. 56, 3014(1984).
96. J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu and M. S. Liang, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film”, J. Appl. Phys. 92, 3936(2002).
97. J. Y. Tseng, C. W. Cheng, S. Y. Wang, T. B. Wu, K. Y. Hsieh and R. Liu, “Memory characteristics of Pt nanocrystals self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures”, Appl. Phys. Lett. 85, 2595(2004).
98. B. Garrido, S. Cheylan, O. Gonzalez-Varona, A. Perez-Rodriguez, and J. R. Morante, “The effect of additional oxidation on the memory characteristics of metal-oxide-semiconductor capacitors with Si nanocrystals”, Appl. Phys. Lett. 82, 4818(2003).
99. L. Perniola, B. D. Salvo, G. Ghibaudo, A. F. Para, G. Pananakakis, T. Baron, and S. Lombardo, “Influence of dots size and dots number fluctuations on the electrical characteristics of multi-nanocrystal memory devices”, Solid-State Electronics 47, 1637(2003).
100. K. C. Scheer, R. A. Rao, R. Muralidhar, S. Bagchi, and J. Conner, “Thermal oxidation of silicon nanocrystals in O2 and NO ambient”, J. Appl. Phys. 93, 5637(2003).
101. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing”, Appl. Phys. Lett. 77, 3450(2000).
102. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement”, J. Appl. Phys. 94, 7261(2003).
103. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurements”, J. Appl. Phys. 93, 576(2003).
104. B. J. Hinds, T. Yamanaka, and S. Oda, “Emission lifetime of polarizable charge stored in nano-crystalline Si based single-electron memory”, J. Appl. Phys. 90, 6402(2001).
105. E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055(1967).
106. J. J. Lee, X. Wang, W. Bai, N. Lu, J. Liu, and D. L. Kwong, “Theoretical and experimental investigation od Si nanocrystal memory device with HfO2 high-k tunneling dielectric”, Symposium on VLSI Technology Digest of Technical Papers, 33(2003).
107. D. W. Kim, T. Kim, and S. K. Banerjee, “Memory characterization of SiGe quantum dot flash memories with HfO2 and SiO2 tunneling dielectrics”, IEEE Trans. Electron Devices 50, 1823(2003).
108. Y. Q. Wang, J. H. Chen, W. J. Yoo, Y. C. Yeo, S. J. Kim, R. Gupta, and Zerlinda Y. L. Tan, “Formation of Ge nanocrystals in HfAlO high-k dielectric and application in memory device”, Appl. Phys. Lett. 84, 5407(2004).
109. R. Gupta, W. J. Yoo, Y. Q. Wang, Zerlinda Y. L. Tan, G. Samudra, S. Lee, D. S. H. Chan, and K. P. Loh, “Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory application”, Appl. Phys. Lett. 84, 4331(2004).
110. E. Lebanon, A. Schiller, and F. B. Anders, “Coulomb blockade in quantum boxes”, Phys. Rev. B 68, 041311-1(2003).
111. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurements”, J. Appl. Phys. 93, 576(2003).