簡易檢索 / 詳目顯示

研究生: 曾駿逸
Jiun-Yi Tseng
論文名稱: 白金奈米晶粒於金屬-氧化物-半導體結構中對非揮發性懸浮閘極記憶體應用之研究
A Study of Pt Nanocrystals in Metal-Oxide-Semiconductor Structures for Nonvolatile Floating Gate Memory Applications
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 167
中文關鍵詞: 非揮發性記憶體白金奈米晶粒懸浮閘極
外文關鍵詞: non-volatile memory, Pt nanocrystal, floating gate
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    存在於金屬-氧化物-半導體(MOS)結構中的白金奈米晶粒(Pt nanocrystal) 對於非揮發性(nonvolatile)懸浮閘極(floating gate)記憶體的應用在本論文中有詳細地探討。為了製造此種新型奈米尺寸的非揮發性記憶體,一種新穎又簡單且具有再現性的製程方法(利用白金氧化物(PtOx)在高溫的還原特性)已成功地被開發出來。利用此製程所形成的白金奈米晶粒不但具有均勻分佈於基材(SiO2)且擁有良好的絕緣等特性;此外白金奈米晶粒之尺寸集中於2-3 nm且同時擁有極高的奈米晶粒密度約為2.16*1012 cm-2完全符合此新型奈米尺寸非揮發性記憶體的要求。在本研究中,由於電子(electron)或電洞(hole)儲存於白金奈米晶粒所造成電容-電壓曲線(C-V curve)的遲滯(hysteresis)現象清楚地被觀察到,亦實際證明此新型奈米記憶體對於非揮發性元件應用之可行性。同時在本研究中,我們也發現儲存電荷的機制主要有兩種;其一為藉由基板注入(sbustrate injection),另一個機制乃是藉由gate oxid內部缺陷電荷注入(defect injection)所造成。這兩種機制同時存在且相互競爭,在較薄的tunnel oxide下,基板注入變成主要的儲存電荷機制,反之則為缺陷電荷注入。而在儲存電荷(charge storage)與保存電荷(retention)的記憶特性方面,藉由基板注入的機制相較於缺陷電荷注入的機制穩定且有效率。在本研究中,我們亦探討不同真空熱處理時間對此非揮發性記憶元件之特性的影響。研究中發現,較長的熱處理時間(≧ 25 min)對於gate oxide內部缺陷的回復(recovery)與促進白金奈米晶粒良好的絕緣性有很大的幫助,並進而改善且降低側向漏電(lateral charge loss)與缺陷電荷注入(defect injection)的效應。因此較長時間熱處理的元件擁有較好的儲存電荷與保存電荷之記憶特性。再者,根據電導-電壓曲線(G-V curve)特性的結果可知,由於庫倫阻塞效應(Coulomb blockade effect)所造成的室溫巨觀單電子傳輸(macroscopic single-electron transfer)行為存在於此金屬-氧化物-半導體結構中的白金奈米晶粒。


    Abstract
    The nonvolatile memory characteristics of metal-oxide-semiconductor structures containing Pt nanocrystals in SiO2 gate oxide were studied. In this work, a novel, simple and reliable self-assembly process of Pt nanocrystals formation from the reduction of an ultrathin PtOx layer embedded in SiO2 matrix is developed successfully, which is fully compatible with Si technology nowadays. The self-assembled array of uniformly-dispersed and well-isolated Pt nanocrystals with the high spatial density (~2.16×1012 cm-2) and a narrow size distribution in the range of 2-3 nm was obtained by vacuum annealing at 425 ℃ for 25 min. A large hysteresis loop was found in the capacitance-voltage (C-V) relation indicating this significant memory effect. However, two different charge storage mechanisms were found for the Pt nanocrystals in the devices with different tunnel oxide thickness. One is denoted by the counterclockwise hysteresis resulting from substrate injection for the devices made with a thin tunnel oxide layer of 2.5~5.0 nm thick, and the other is characterized by the clockwise hysteresis attributed to the defect injection from the overlaid sputtered gate oxide for the devices having a tunnel oxide layer of 7.5 nm thick. The two mechanisms, substrate injection and defect injection, coexist at the same time but compete with each other. For tunnel oxide being thick enough (≧ 7.5 nm), the substrate injection would be significantly suppressed, and thus the defect injection becomes dominant. A model of defect injection is proposed to explain the clockwise hysteresis. The relatively stable memory characteristics of Pt nanocrystals resulting from substrate injection were also demonstrated. In Chapter 6, the effects of annealing time on the microstructure and electrical characteristics of the self-assembled Pt nanocrystals in SiO2 matrix are clear and significant. For a long enough annealing time, not only the Pt nanocrystals are well isolated and uniformly dispersed, but also the defects in the sputtered oxide are recovered. The superior charge storage and retention characteristics can be obtained due to the small lateral charge loss and the suppression of defect injection. Moreover, according to the gate-voltage dependence of charge storage and the result of the conductance-voltage (G-V) measurement, the macroscopic single-electron transfer due to the Coulomb blockade effect in the MOS device with embedded Pt nanocrystals is successfully demonstrated at room temperature in this research.

    Contents ABSTRACT Ⅰ 摘要 Ⅲ 誌謝 Ⅴ CONTENTS Ⅶ LIST OF TABLE ⅩⅡ LIST OF FIGURE ⅩⅢ CHAPTER 1 Introduction 1 1.1 Prelude 1 1.1.1 A Severe Gap between Si-ULSI and Nanodevices 1 1.1.2 Three Phases in Development of Silicon Nanodevices 2 1.1.3 The Problem with Floating Gate Non-volatile Memories 4 1.2 Motivation and Objectives of Research 5 CHAPTER 2 Literature Review 10 2.1 Introduction to Memories 10 2.1.1 Semiconductor Memories 10 2.1.2 Mechanical memories (Mass-Storage memories) 11 2.2 Overview of Semiconductor Memories 12 2.2.1 Performance Considerations 12 2.2.2 Non-volatile Semiconductor Memories 14 2.3 Nanocrystal Memories 16 2.3.1 Overview of Nanocrystal / Nanodot memories 16 2.3.2 Theory of Silicon Nanocrystals Devices 17 2.3.3 Metal Nanocrystal Memories 19 2.3.4 Alternative Nanocrystal Devices 20 2.3.4.1 Double Stacked Nanodots 20 2.3.4.2 Silicon Nanocrystals with Oxide-Nitride Dielectrics 21 2.4 Single Electron Memories 22 2.5 Metal-Oxide-Semiconductor Devices 25 2.5.1 Surface Potential: Accumulation, Depletion, and Inversion 25 2.5.2 Shift of Flat-Band Voltage 28 Chapter 3 Experimental Procedure 38 3.1 Devices Fabrication 38 3.1.1 RCA Clean 38 3.1.2 Back-side Ion Implantation 39 3.1.3 Dry Thermal Oxidation 39 3.1.4 PtOx Ultrathin Film and Gate Oxide Deposition 40 3.1.5 Pt Nanocrystal Formation 41 3.1.6 Metallization 41 3.2 Analysis and Measurement 42 3.2.1 Binding Energy Analysis 42 3.2.2 Microstructure Observation 42 3.2.3 Electrical Measurement 42 Chapter 4 Effect of Different Tunnel Oxide Thickness on MOS Device with Embedded Pt Nanocrystals 49 4.1 Introduction 49 4.2 Experimental 51 4.3 Results and Discussion 52 4.3.1 Self-Assembled Pt Nanocrystals 52 4.3.2 Analysis of X-ray Photoelectron Spectroscopy 53 4.3.3 Charge Storage Effect (Memory Effect) in Capacitance-Voltage Relations 54 4.3.4 Current-Voltage Characteristics 58 4.3.5 Effect of Gate Voltage on Flat-Band Voltage (Vfb) 58 4.3.6 Effect of Measurement Frequency on Flat-Band Voltage 59 4.3.7 Retention Characteristic 59 4.4 Conclusions 60 Chapter 5 Effect of Different Gate Oxide Thickness on MOS Device with 7.5 nm-thick Tunnel Oxide 77 5.1 Introduction 77 5.2 Experimental 77 5.3 Results and Discussion 78 5.3.1 Charge Storage Effect in Capacitance-Voltage Relations 78 5.3.2 Current-Voltage Relations 81 5.3.3 Effect of Gate Voltage on Flat-Band Voltage 81 5.3.4 Effect of Measurement Frequency on Flat-Band Voltage 82 5.4 Conclusions 82 Chapter 6 Effect of Annealing Time on the Structural and Electrical Characteristics of Self-assembled Pt Nanocrystals in Metal-Oxide-Semiconductor Memory Structure 94 6.1 Introduction 94 6.2 Experimental 95 6.3 Results and Discussion 96 6.3.1 Microstructure Observation and Analysis after Annealing for Different Time 96 6.3.2 Analysis of X-ray Photoelectron Spectroscopy 97 6.3.3 Hysteresis in Capacitance-Voltage Relations 98 6.3.4 Effect of Measurement Frequency 99 6.3.5 Current-Voltage Relations 100 6.3.6 Effect of Gate Voltage 101 6.3.7 Conductance Characteristics 104 6.3.8 Retention Characteristics 107 6.4 Conclusions 107 CHAPTER 7 Summary 127 REFERENCE 129 Appendix A Dielectric Enhancement in (001)-Textured BaTiO3/LaNiO3 Superlattices 145 List of Table Table 2.1 Performance issues of semiconductor memories 29 Table 3.1 Sputtering conditions of the PtOx layer and gate oxide, SiO2 44 Table 3.2 Annealing condition in vauunm 44 Table 3.3 Sputtering conditions of Pt top electrode 44 Table 4.1 Key parameters of the process and MOS structures in the designed experiment 62 Table 4.2 Estimated densities of stored charge in the devices with different tunnel oxide 62 Table 5.1 Key parameters of the process and MOS structures in the designed experiment 84 Table 5.2 Estimated densities of stored charge in the devices with different gate oxide thicknesses 84 Table 6.1 Key parameters of the process and MOS structures in the designed experiment 109 Table 6.2 Effect of different annealing time on the composition ratio of Pt metal to Pt silicide 109 Table 6.3 Estimated densities of stored charge in the devices annealed for different annealing time 110 List of Figure Figure 1.1 A gap between silicon ULSI and silicon-related nanodevices 8 Figure 1.2 Three phases in the development in silicon nanodevices 8 Figure 1.3 Characteristics of a silicon dot memory. Clear hysteresis is observed only when silicon dots exist in oxide. Inset shows device structure. 9 Figure 1.4 Average electron number in silicon dots as a function of gate voltage. Inset is a MOS diode structure assumed for the calculation. Even when dot size is distributed, electron number is almost kept constant by the Coulomb blockade. 9 Figure 2.1 General classification of Memories 30 Figure 2.2 Cross-section schematic of a possible nanocrystal memory cell 30 Figure 2.3 Evolution and development of nanocrystal flash memories 31 Figure 2.4 Transistor with a distributed film of silicon nanocrystals over the tunnel oxide. 31 Figure 2.5 Double sweep capacitance-voltage characteristics of MIS diode structure containing a layer of silicon nanocrystals compared to a control pure SiO2 structure 32 Figure 2.6 Schematic band diagrams of different metal nanocrystals in the MOS structure shows different effective potential well depth (deff) due to the difference of different work function. 32 Figure 2.7 Schematic cross-section of a silicon nanocrystal memory with a double layer of nanodots. 33 Figure 2.8 Illustration of screening effect of a single electron in a silicon nanodot with (a) nanodot charged (written), (b) nanodot uncharged (erased). 33 Figure 2.9 Schematic curve illustrating the change of drain current vs. control gate voltage for a silicon nanodot memory. 34 Figure 2.10 Current-Voltage characteristics of a diode with embedded Sn nanodots showing a Coulomb blockade region and Coulomb staircases. 34 Figure 2.11 (a) Schematic cross section and (b) energy-band diagram of the three components of an MOS capacitor 35 Figure 2.12 Energy-band diagrams for ideal p-type MOS capacitors under different bias conditions 36 Figure 2.13 Effects of Qss on the flat band voltage of the C-V relation in an ideal p-type MOS structure. (a) for negative charge (-Qss), and (b) for positive charge (+Qss). 37 Figure 3.1 Schematic croee-section of the Pt nanocrystal nonvolatile memory in this research 45 Figure 3.2 Flow chart of the MOS device fabrication in this research 46 Figure 3.3 Schematic diagram of the dual guns RF-sputtering system 47 Figure 3.4 Flow chart of the analyses of the Pt nanocrystal memory 48 Figure 4.1 Schematic of the MOS memory device with different tunnel oxide 63 Figure 4.2 Cross-sectional TEM image of Pt nanocrystals in the device annealed at 425 ℃ for 25 min 63 Figure 4.3 Plane view TEM image of Pt nanocrystals in the device annealed at 425 ℃ for 25 min 64 Figure 4.4 Size distribution of Pt nanocrystals in the device annealed at 425 ℃ for 25 min 64 Figure 4.5 HREM lattice image of isolated Pt nanocrystals in SiO2 matrix after annealing at 425 ℃ for 25 min 65 Figure 4.6 XPS spectra of Pt 4f electrons in reduced PtOx. Empty and solid circles indicate experimental and fitting results, respectively. 66 Figure 4.7 High-frequency C-V relations of the MOS devices with different tunnel oxide thicknesses. In the figure, s-SiO2, n-Pt and t-SiO2 denote sputtered SiO2, Pt nanocrystals and thermally-grown SiO2, respectively. 67 Figure 4.8 Schematics of the MOS device with a 2.5 (or 5.0) nm-thick tunnel oxide, applied positive or negative gate voltage (a) inversion condition, and (b) accumulation condition 68 Figure 4.9 Band diagrams under (a) inversion condition, and (b) accumulation condition of the nanocrystal memory device applied positive or negative gate voltage 69 Figure 4.10 Current-voltage (I-V) relations of all MOS devices having different tunnel oxide thicknesses 71 Figure 4.11 Effect of gate voltage on flat-band voltage (Vfb) and Qs of MOS devices with different tunnel oxide thicknesses (a) 2.5 nm, (b) 5.0 nm, and (c) 7.5 nm 72 Figure 4.12 Effect of measurement frequency on the flat-band voltage of MOS devices with (a) 2.5 nm, (b) 5.0 nm, and (c) 7.5 nm-thick tunnel oxide layers 74 Figure 4.13 Charge retention characteristics of the Pt nanocrystals in the MOS devices with 2.5, 5.0, and 7.5 nm-thick tunnel oxide layer using a ± 8 V gate voltage stress 76 Figure 5.1 Schematic of the MOS memory device with different gate oxide thicknesses 85 Figure 5.2 High-frequency C-V relations of MOS devices with fixed 7.5 nm-thick tunnel oxide and different gate oxide thicknesses 86 Figure 5.3 Schematics of the MOS devices with (a) 7.5 nm (b) 2.5 (or 5.0) nm-thick tunnel oxide, applied positive gate voltage under inversion condition. 87 Figure 5.4 Modified band diagrams under (a) inversion condition, and (b) accumulation condition of the nanocrystal memory device applied positive or negative gate voltage 88 Figure 5.5 Current-voltage (I-V) relations of all MOS devices having different gate oxide thicknesses 90 Figure 5.6 Effect of gate voltage on flat-band voltage (Vfb) and Qs of MOS devices with different gate oxide thicknesses (a) 12nm, (b) 24nm, and (c) 36nm 91 Figure 5.7 Effect of measurement frequency on flat-band voltage shift of C-V hysteresis in devices with different gate oxide thicknesses 93 Figure 6.1 Cross-sectional TEM images of Pt nanocrystals in SiO2 matrix for different annealing time (a) 5min, (b) 25 min and (c) 50 min 111 Figure 6.2 Plane view TEM images of Pt nanocrystals in SiO2 matrix for different annealing time (a) 5 min, (b) 25 min and (c) 50 min 113 Figure 6.3 Size distribution of Pt nanocrystals for different annealing time (a) 25 min and (b) 50 min 115 Figure 6.4 XPS spectra of Pt 4f electrons in reduced PtOx for different annealing time (a) 5 min, (b) 25 min and (c) 50 min. Solid and empty circles indicate experimental and fitting results, respectively. 116 Figure 6.5 High-frequency C-V relations of MOS devices with the fixed 2.5 nm-thick tunnel oxide and fixed 24 nm-thick gate oxide for the different annealing time 118 Figure 6.6 Effect of measurement frequency on flat-band voltage shift of C-V hysteresis (ΔVfb, hysteresis) in all devices with a 2.5 nm-thick tunnel oxide for different annealing time 119 Figure 6.7 Effect of different annealing time on current-voltage (I-V) relations of all MOS devices having a 2.5 nm tunnel oxide thickness 120 Figure 6.8 Effect of gate voltage on flat-band voltage of MOS devices with a 2.5 nm-thick tunnel oxide for different annealing time 121 Figure 6.9 Effect of gate voltage on the Qs of MOS devices with a 2.5 nm-thick tunnel oxide for different annealing time 122 Figure 6.10 Effect of gate voltage on the N (number of stored charge) of MOS devices with a 2.5 nm-thick tunnel oxide for different annealing time 123 Figure 6.11 Effect of positive and negative gate voltage on the N (number of stored charge) of MOS devices for different annealing time 124 Figure 6.12 Conductance characteristics of of MOS devices with the fixed 2.5 nm-thick tunnel oxide and fixed 24 nm-thick gate oxide for the different annealing time: (a) 50 min, (b) 25 min and (c) 5 min. The arrow in the figures denotes the sweeping direction of voltage. 125 Figure 6.13 Effect of different annealing time on charge retention characteristics of Pt nanocrystals in three MOS devices with a 2.5 nm-thick tunnel oxide layer using a ± 8 V gate voltage stress 126

    REFERENCE
    1. T. Hiramoto, “To fill the gap between Si-ULSI and nanodevices”, International Journal of High Speed Electronics and Systems 10 (1), 197(2000).
    2. International Technology Roadmap of Semiconductor, 1998 Update, 1999. http://www.semichips.org.
    3. Y. Ohkura, Solid State Electronics 33, 1581(1990).
    4. K. Yano, T. Ishii, T. Mine, F. Murai, T. Kure, and K. Seki, ISSCC Tech. Dig., p. 344(1998).
    5. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377(1996).
    6. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358(1998).
    7. S. Takagi, J. Koga, and A. Toriumi, IEDM Tech. Dig., 219(1997).
    8. B. Prince, “Emerging Memories – Technologies and Trends” by Kluwer Academic Publishers, p. 133(2002).
    9. S. Habermehl, R. D. Nasby, and M. J. Rightley, “Cycling endurance of silicon-oxide-nitride-oxide-silicon nonvolatile memory stacks prepared with nitrided SiO2/Si(100) interfaces”, Appl. Phys. Lett. 75, 1122(1999).
    10. S. Choi, M. Cho, and J. W. Kim, “Improved metal-oxide-nitride-oxide-silicon-type flash device with high-k dielectrics for blocking layer”, J. Appl. Phys. 94, 5408(2003).
    11. C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-giga bit flash memories”, IEDM Tech. Dig., 613(2003).
    12. T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, Symposium on VLSI Technology Digest of Technical Papers, 27(2003).
    13. R. Ohba, N. Sugiyama, J. Koga, and S. Fujita, “Silicon nitride trap memory with double tunnel junction”, Symposium on VLSI Technology Digest of Technical Papers, 35(2003).
    14. J. H. Kim, I. W. Cho, G. J. Bae, S. S. Kim, K. C. Kim, S. H. Kim, K. W. Koh, N. I. Lee, H. K. Kang, and K. P. Suh, “Highly manufacturable SONOS nonvolatile memory for the embedded SoC solution”, Symposium on VLSI Technology Digest of Technical Papers, 31(2003).
    15. H. C. Wann and Chenming Hu, “High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application”, IEEE Electron Device Letters 16(11), 491(1995).
    16. M. K. Cho and D. M. Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters 21(8), 399(2000).
    17. S. Minami and Y. Kamigaki, “A novel MONOS nonvolatile memory device ensuring 10-year data retention after 107 erase/write cycles”, IEEE Trans. Electron Devices 40(11), 2011(1993).
    18. Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a Hafnium oxide charge storage layer”, IEEE Trans. Electron Devices 51(7), 1143(2004).
    19. J. Bu and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices”, Solid State Electronics 45, 113(2001).
    20. “Protonic computer memory remembers information when power goes off”, press release of Sandia National Lab., http://www.sandia.gov/media/protonic.htm
    21. W. L. Warren, “Protonic nonvolatile field effect transistor memories in Si/SiO2/Si structures”, IEEE Trans. on Nuclear Science 44, 1789(1997).
    22. D. M. Fleetwood, “Nonvolatile memory based on mobile protons”, Nonvolatile Memory Technology Conference(1998).
    23. T. S. Yoon, J. Y. Kwon, D. H. Lee, and K. B. Kim, “High spatial density nanocrystal formation using thin layer of amorphous Si0.7Ge0.3 deposited on SiO2”, J. Appl. Phys. 87, 2449(2000).
    24. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794(2002).
    25. L. Guo, E. Leobandung, and S. Y. Chou, “A silicon single-electron transistor memory operating at room temperature”, Science 275, 649(1997).
    26. I. Kim, S. Han, K. Han, J. Lee, and H. Shin, “Room temperature single electron effects in a Si nanocrystal memory”, IEEE Electron Device Letters 20(12), 630(1999).
    27. H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553(1996).
    28. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232(1996).
    29. H. Silva, M. K. Kim, A. Kumar, U. Avci, and S. Tiwari, “Few electron memories: finding the compromise between performance, variability and manufacturability at the nano-scale”, IEDM Tech. Dig., 271(2003).
    30. M. Saitoh, E. Nagata, and T. Hiramoto, “Large memory window and long charge-retention time in ultranarrow channel silicon floating-dot memory”, Appl. Phys. Lett. 82, 1787(2003).
    31. N. Takahashi, H. Ishikuro, and T. Hiramoto, “Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates”, Appl. Phys. Lett. 76, 209(2000).
    32. H. Ishikuro and T. Hiramoto, “Influence of quantum confinement effects on single electron and single hole transistors”, IEDM Tech. Dig., 119(1998).
    33. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of interface traps on charge retention characteristics in silicon-quantum-dot-based metal-oxide-semiconductor diodes”, Jpn. J. Appl. Phys., Part 1 38, 425(1999).
    34. A. Kanjilal, J. Lundsgaard Hansen, P. Gaiduk, and A. Nylandsted Larsen, “Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy”, Appl. Phys. Lett. 82, 1212(2003).
    35. D. N. Kouvatsos, V. Loannou-Sougleridis and A. G. Nassiopoulou, “Charging effects in silicon nanocrystals within SiO2 layers, fabricated by chemical vapor deposition, oxidation, and annealing”, Appl. Phys. Lett. 82, 397(2003).
    36. K. Das, M. N. Goswami, R. Mahapatra, G. S. Kar, A. Dhar, and H. N. Acharya, “Charge storage and photoluminescence characteristics of silicon oxide embedded Ge nanocrystal trilayer structures”, Appl. Phys. Lett. 84, 1386(2004).
    37. T. Kobayashi, T. Endoh, H. Fukuda, S. Nomura, A. Sakai, and Y. Ueda, “Ge nanocrystals in SiO2 films”, Appl. Phys. Lett. 71, 1195(1997).
    38. H. Fukuda, S. Sakuma, T. Yamada, and S. Nomura, “Physical and electric properties of Ge-implanted SiO2 films”, J. Appl. Phys. 90, 3524(2001).
    39. L. X. Yi, J. Heitmann, R. Scholz, and M. Zacharias, “Si rings, Si clusters, and Si nanocrystals—different states of ultrathin SiOx layers”, Appl. Phys. Lett. 81, 4248(2002).
    40. W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, “Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films”, J. Appl. Phys. 89, 2168(2001).
    41. Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang, and X. B. Liao, “Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix”, Appl. Phys. Lett. 81, 4174(2002).
    42. W. K. Choi, V. Ng, S. P. Ng, and H. H. Thio, “Raman characterization of germanium nanocrystal in amorphous silicon oxide films synthesized by rapid thermal annealing”, J. Appl. Phys. 86, 1398(1999).
    43. S. J. Baik, S. Choi, U-In Chung, and J. T. Moon, “High speed and nonvolatile Si nanocrystal memory for scaled flash technology using highly field-sensitive tunnel barrier”, IEDM Tech. Dig., 545(2003).
    44. K. W. Guarini, C. T. Black, Y. Zhang, I. V. Babich, E. M. Sikorski, and L. M. Gignac, “Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly”, IEDM Tech. Dig., 541(2003).
    45. R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve, K. Harber, and B. Hradsky, “A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory”, IEDM Tech. Dig., 601(2003).
    46. T. Ohzone, T. Matsuda, and T. Hori, “Erase/write cycle test of n-MOSFET’s with Si-implanted gate-SiO2”, IEEE Trans. Electron Devices 43, 1374(1996).
    47. G. Puzzilli, D. Caputo, and F. Irrera, “Fast and reliable tunnel programming of nanocrystal nonvolatile memories”, IEEE Trans. Electron Devices 51, 1205(2004).
    48. C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8.18.1(2003).
    49. C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557(2003).
    50. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅰ: device design and fabrication”, IEEE Trans. Electron Devices 49, 1606(2002).
    51. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—part Ⅱ: electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614(2002).
    52. M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J-C. Shim, H. Kurino and M. Koyanagi, “New non-volatile memory with extremely high density metal nano-dots”, IEDM Tech. Dig., 553(2003).
    53. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, in proceedings of the IEEE, number 8, p. 1248(1997).
    54. A. K. Sharma, “Semiconductor memories”, IEEE press, New Jersey, 1997.
    55. L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639(2002).
    56. V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558(2003).
    57. W. K. Choi and W. K. Chim, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 80, 2014(2002).
    58. V. Ho, M. S. Tay, C. H. Moey, L. W. Teo, W. K. Choi, W. K. Chim, C. L. Heng, and Y. Lei, “Electrical characterization of a trilayer germanium nanocrystal memory device”, Microelectronic Engineering 66, 33(2003).
    59. M. Dai, K. Chen, X. Huang, L. Wu, L. Zhang, F. Qiao, W. Li, and K. Chen, “Formation and charging effect of Si nanocrystals in a-SiNx/a-Si/a-SiNx structures”, J. Appl. Phys. 95, 640(2004).
    60. Q. Wan, C. L. Lin, W. L. Liu, and T. H. Wang, “Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric”, Appl. Phys. Lett. 82, 4708(2003).
    61. Q. Wan, N. L. Zhang, W. L. Liu, C. L. Lin, and T. H. Wang, “Memory and negative photoconductivity effects of Ge nanocrystals embedded in ZrO2/Al2O3 gate dielectrics”, Appl. Phys. Lett. 83, 138(2003).
    62. Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex”, IEEE Trans. Electron Devices 48, 696(2001).
    63. Y.-C. King, T.-J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig., 98(1998).
    64. C. Kuo, T.-J. King, and C. Hu, “Direct tunneling RAM (DT-RAM) for high-density memory applications”, IEEE Electron Device Letters 24(7), 475(2003).
    65. J. K. Kim. H. J. Cheong, Y. Kim, J. Y. Yi, H. J. Bark, S. H. Bang, and J. H. Cho, “Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals”, Appl. Phys. Lett. 82, 2527(2003).
    66. R. Ohba, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEDM Tech. Dig., 313(2000).
    67. I. Kim, “Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics”, IEDM Tech. Dig., 111(1998).
    68. K. Yano, “Room-temperature single-electron memory”, IEEE Trans. Electron Devices 41, 1628(1994).
    69. K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Kure, and K. Seki, “Status of single-electron memories”, IEDM Tech. Dig., 107(1998).
    70. T. Baron, P. Gentile, N. Magnea, and P. Mur, “Single-electron charging effect individual Si nanocrystals”, Appl. Phys. Lett. 79, 1175(2001).
    71. K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, “Metal-nanoparticle single-electron transistors fabricated using electromigration”, Appl. Phys. Lett. 84, 3154(2004).
    72. Y. Inoue and A. Tanaka, “Single-electron tunneling through Si nanocrystals dispersed in phosphosilicate glass thin films”, J. Appl. Phys. 86, 3199(1999).
    73. L. Guo, E. Leobanddung, and Stephen Y. Chou, “A room-temperature silicon single-electron metal-oxide-semiconductor memory with nanoscale floating-gate and ultranarrow channel”, Appl. Phys. Lett. 70, 850(1997).
    74. K. Matsumoto, Y. Gotoh, T. Maeda, J. A. Dagata, and J. S. Harris, “Room temperature Coulomb oscillation and memory effect for single electron memory made by pulse-mode AFM nano-oxidation process”, IEDM Tech. Dig., 449(1998).
    75. Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and K. Murase, “Fabrication method for IC-oriented Si twin-island single-electron transistors”, IEDM Tech. Dig., 123(1998).
    76. G. Molas, B. D. Salvo, D. Mariolle, G. Ghibaudo, A. Toffoli, N. Buffet, and S. Deleonibus, “Single electron charging and discharging phenomena at room temperature in a silicon nanocrystal memory”, Solid-State Electronics 47, 1645(2003).
    77. T. W. Kim, D. C. Choo, J. H. Shim, and S. O. Kang, “Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam”, Appl. Phys. Lett. 80, 2168(2002).
    78. I. Kim, S. Han, H. Kim, J. Lee, B. Choi, S. Hwang, D. Ahn, and H. Shin, “Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics”, IEDM Tech. Dig., 111(1998).
    79. T. Futatsugi, “Silicon single-electron memory using ultra-small floating gate”, Fujitsu Science Technology Journal 34, 142(1998).
    80. C. Wasshuber, “A comparative study of single-electron mempries”, IEEE Trans. Electron Devices 45, 2365(1998).
    81. D. K. Schroder, Semiconductor material and device characterization 2nd, ed. by John Wiley and Sons, INC., p. 362(1998).
    82. D. A. Neamen, Semiconductor Physics and Devices 2nd, p. 419.
    83. Y. Taur, and T. H. Ning, Fundamentals of modern VLSI devices, Cambridge University Press, p. 58(1998).
    84. Y. Abe, M. Kawamura, and K. Sasaki, “Preparation of PtO and α-PtO2 thin films by reactive sputtering and their electrical properties”, Jpn. J. Appl. Phys., Part 1 38, 2092(1999).
    85. Y. Abe, M. Kawamura, and K. Sasaki, “Effects of oxygen gettering and target mode change in the formation process of reactively sputtered Pt oxide thin films”, J. Vac. Sci. Technol. A 18(5), 2608(2000).
    86. M. C. Jung, H. D. Kim, M. Han, W. Jo, and D. C. Kim, “X-ray photoelectron spectroscopy study of Pt-oxide thin films deposited by reactive sputtering using O2/Ar gas mixtures”, Jpn. J. Appl. Phys., Part 1 38, 4872(1999).
    87. Y. Abe, H. Yanagisawa, and K. Sasaki, “Preparation of oxygen-containing Pt and Pt oxide thin films by reactive sputtering and their characterization”, Jpn. J. Appl. Phys., Part 1 37, 4482(1998).
    88. M. H. Magnusson, K. Deppert, J. O. Malm, J. O. Bovin, and L. Samuelson, J. Nanoparticle Research 1, 243(1999).
    89. Y. C. Kang, and S. B. Park, J. Aerosol Sci. 26, 1131(1995).
    90. M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, and H. A. Atwater, “Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices”, Appl. Phys. Lett. 79, 433(2001).
    91. P. Normand, E. Kapetanakis, P. Dimitrakis, and D. Tsoukalas, “Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis”, Appl. Phys. Lett. 83, 168(2003).
    92. A. G. Nassibian and L. Faraone, “Hysteresis and memory properties of platinum-diffused metal-oxide-silicon structures”, Appl. Phys. Lett. 37, 75(1980).
    93. A. G. Nassibian and L. Faraone, “Platinum-induced hysteresis and nonvolatile memory properties in MOS system (PLATMOS)”, IEEE Trans. Electron Devices 27, 1757(1980).
    94. A. G. Nassibian, D. Jordan, B. Golja, and J. G. Simmons, “The platinum doped MOST: a memory storage element”, IEEE Trans. Electron Devices 28, 1014(1981).
    95. B. Golja and A. G. Nassibian, “C-V hysteresis in metal-oxide-semiconductor structures resulting from Pt doping of the gate oxide”, J. Appl. Phys. 56, 3014(1984).
    96. J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu and M. S. Liang, “A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film”, J. Appl. Phys. 92, 3936(2002).
    97. J. Y. Tseng, C. W. Cheng, S. Y. Wang, T. B. Wu, K. Y. Hsieh and R. Liu, “Memory characteristics of Pt nanocrystals self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures”, Appl. Phys. Lett. 85, 2595(2004).
    98. B. Garrido, S. Cheylan, O. Gonzalez-Varona, A. Perez-Rodriguez, and J. R. Morante, “The effect of additional oxidation on the memory characteristics of metal-oxide-semiconductor capacitors with Si nanocrystals”, Appl. Phys. Lett. 82, 4818(2003).
    99. L. Perniola, B. D. Salvo, G. Ghibaudo, A. F. Para, G. Pananakakis, T. Baron, and S. Lombardo, “Influence of dots size and dots number fluctuations on the electrical characteristics of multi-nanocrystal memory devices”, Solid-State Electronics 47, 1637(2003).
    100. K. C. Scheer, R. A. Rao, R. Muralidhar, S. Bagchi, and J. Conner, “Thermal oxidation of silicon nanocrystals in O2 and NO ambient”, J. Appl. Phys. 93, 5637(2003).
    101. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Charge storage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing”, Appl. Phys. Lett. 77, 3450(2000).
    102. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement”, J. Appl. Phys. 94, 7261(2003).
    103. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurements”, J. Appl. Phys. 93, 576(2003).
    104. B. J. Hinds, T. Yamanaka, and S. Oda, “Emission lifetime of polarizable charge stored in nano-crystalline Si based single-electron memory”, J. Appl. Phys. 90, 6402(2001).
    105. E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1055(1967).
    106. J. J. Lee, X. Wang, W. Bai, N. Lu, J. Liu, and D. L. Kwong, “Theoretical and experimental investigation od Si nanocrystal memory device with HfO2 high-k tunneling dielectric”, Symposium on VLSI Technology Digest of Technical Papers, 33(2003).
    107. D. W. Kim, T. Kim, and S. K. Banerjee, “Memory characterization of SiGe quantum dot flash memories with HfO2 and SiO2 tunneling dielectrics”, IEEE Trans. Electron Devices 50, 1823(2003).
    108. Y. Q. Wang, J. H. Chen, W. J. Yoo, Y. C. Yeo, S. J. Kim, R. Gupta, and Zerlinda Y. L. Tan, “Formation of Ge nanocrystals in HfAlO high-k dielectric and application in memory device”, Appl. Phys. Lett. 84, 5407(2004).
    109. R. Gupta, W. J. Yoo, Y. Q. Wang, Zerlinda Y. L. Tan, G. Samudra, S. Lee, D. S. H. Chan, and K. P. Loh, “Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory application”, Appl. Phys. Lett. 84, 4331(2004).
    110. E. Lebanon, A. Schiller, and F. B. Anders, “Coulomb blockade in quantum boxes”, Phys. Rev. B 68, 041311-1(2003).
    111. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurements”, J. Appl. Phys. 93, 576(2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE