簡易檢索 / 詳目顯示

研究生: 陳玟妤
Wen-Yu,Chen
論文名稱: 同值點定理及其應用
Coincidence Theorems and Their Applications
指導教授: 張東輝
Tong-Huei,Chang
口試委員:
學位類別: 碩士
Master
系所名稱:
畢業學年度: 92
語文別: 英文
論文頁數: 24
中文關鍵詞: L-凸空間同值點定理大中取小不等式L-Φ-函數可移式上半連續
外文關鍵詞: L-convex space, coincidence theorem, minimax inequality, L-Φ-mapping, transfer u.s.c
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 設X和Y為兩個不同的 L-凸空間。本論文探討兩個分別由X映到Y和由Y映到X之多值函數的一些同值點定理。我們並利用上述的結果證明大中取小不等式及大中取小等式的存在性定理。本文的結果推廣了許多學者的一些研究結果。


    In this paper, we establish some coincidence theorems of two set-valued functions defined on two L-convex spaces. As applications, we use the above theorems to get the existence theorems concerning minimax inequalities and minimax equalities. Our results generalize many other authors’ results (see, for example, [1],[5] ).

    1.INTRODUCTION------------------ 4 2.PRELIMINARIES------------------ 5 3.MAIN RESULTS ------------------ 9 4.APPLICATIONS-------------------17 REFERENCES --------------------22

    [1] Q.H. Ansari, A. Idzik, J.C. Yao, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal. 15(2000), 191-202.
    [2] H. Ben-El-Mechaiekh, P. Deguire, A. Granas, Points fixes et coincidences pour les functions multivoques II, C. R. Acad. Sci. Paris Ser. I 295(1982), 381-388.
    [3] H. Ben-El-Mechaiekh, S. Chebbi, M. Flornzano and J.V. LIinares, Abstract convexity and fixed points, J. Math. Anal. Appl, 222(1998), 138-150.
    [4] P.Deguire, M. Lassonde, Familles selectantes, Topol. Methods Nonlinear Anal. 5(1995), 261-269.
    [5] P.Deguire, K.K. Tan, G.X.Z. Yuan, The study of maximal elements, fixed point for -majorized mappings and their applications to minimax and variational inequalities in product topological spaces, Nonlinear Anal. 37(1999), 933-951.
    [6] X.P. Ding, Existence of solutions for quasi-equilibrium problems in noncompact topological spaces, Comput. Math. Appl. 39(2000), 13-21.
    [7] X.P. Ding, Coincidence Theorems in Topological Spaces and Their Applications, Applied. Math. Lett. 12(1999), 99-105.
    [8] X.P. Ding and J.Y. Park, Fixed Points and Generalized Vector Equilibrium Problems, Indian J. Pure Appl. Math. 34(6) (2003), 973-990.
    [9] X. P. Ding, Best approximation and coincidence theorems, J. Sichuan Normal Univ. Nat. Sci. 18(1995), 21-29.
    [10] X.P. Ding, Generalized Type Theorems in with Applications, Computers Math. Applic. 43(2002), 1249-1256.
    [11] A. Granas, F.C. Liu, Coincidence for set valued maps and inequalities, J. Math. Anal. Appl. 165(1986), 119-148.
    [12]L.J. Lin, H.I. Chen, Coincidence theorems for family of multimaps and their applications to equilibrium problems, J. Abstr. Anal. 5(2003), 295-305.
    [13] L.J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003), 408-418.
    [14] J. von Neumann, Uber ein okonomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes, Ergeb. Math. Kolloq. 8(1937), 73-83.
    [15] S.Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul Nat. Univ. 18(1993), 1-21.
    [16] S.Park and H. Kim, Coincidence theorems of admissible maps on generalized convex spaces, J. Math. Anal. Appl, 197(1996), 173-187.
    [17] S. Park, fixed point theory of multifunctions in topological vector spaces, II, J. Korean Math. Soc. 30(1993), 413-431.
    [18] S. Park, Functions of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31(1994), 493-519.
    [19] S. Park, Best approximation theorems for composites of upper seimicontinuous maps, Bull. Austral. Math. Soc. 51(1995), 263-272.
    [20] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187.
    [21] S. Park and H. Kim, Functions of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997), 551-571.
    [22] G. Tian, J. Zhou, Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econom, 24(1995), 281-303.
    [23] R.U. Verma, type theorems and their applications to a new class of minimax inequalities, Computers Math. Applic. 37 (8)(1999), 45-48.
    [24] R.U. Verma, generalized and minimax theorems in , Computers Math. Applic. 38(1999), 13-18.
    [25] Z.T. Yu, L.J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52(2003), 445-453.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE