簡易檢索 / 詳目顯示

研究生: 高逸帆
Kao, Yih-Farn
論文名稱: 以高熵合金為媒介合成石墨烯
High-entropy alloy mediated growth of graphene
指導教授: 徐文光
口試委員: 曹春暉
林樹均
葉均蔚
徐文光
呂昇益
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 62
中文關鍵詞: 高熵合金X光繞射分析掃描式電子顯微鏡穿透式電子顯微鏡掃描穿隧式電子顯微鏡X射線光電子光譜拉曼光譜原子力顯微鏡場發射
外文關鍵詞: Scanning tunneling microscope (STM), X-ray photoelectron spectrometer (XPS), Raman spectrometer; Atomic force microscope (AFM)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以乙炔為前驅物,CuxFeCoNiMn合金為基板合成石墨烯。實驗結果顯示,石墨烯的層數可經由x值的調變來控制。單層石墨烯結構於x = 0.5時形成,且其面積達到600平方微米。石墨烯的層數隨著x值上升而增加,而在x = 1.5時轉為turbostratic石墨結構。此x值控制機制涉及5個連續的步驟,且每個步驟都能被實驗數據給支持。


    Pyrolysis of acetylene over thin films made of CuxFeCoNiMn yields graphene and sheet dimension is found to control by x. Monolayer structure forms at x = 0.5 and sheet size reaches a value as large as 600 m2. Layer number increases as x rises and turbostratic graphite forms at x = 1.5. The x-controlled growth mechanism involves five consecutive steps and each is supported by experimental data.

    Abstract...................................................I Content...................................................II Table list...............................................III Figure captions..........................................III 1 Introduction to graphene.................................1 1-1 Carbon-related nanomaterials...........................1 1-2 Physical properties of graphene........................3 1-2-1 Mechanical properties................................3 1-2-2 Electronics structures and electrical properties.....5 1-2-3 Thermal-conduction and photo-detection properties....7 2 Introduction to high-entropy alloys (HEAs)...............9 2-1 Born of HEAs...........................................9 2-2 Formation of HEAs.....................................10 2-3 Four core effects.....................................14 2-4 Physical properties................................................17 3 Motivation of this study................................23 4 Experimental details...................................................25 5 Results and discussion..................................28 5-1 XRD of Sx substrates................................................28 5-2 Raman spectra and mapping of Gx........................................................31 5-3 AFM and TEM characterizations of Gx...................34 5-4 STM imaging of G0.5...................................40 5-5 Bonding characterization by XPS.......................45 5-6 Field emission by Gx..................................48 5-7 Growth mechanism of graphene on Sx....................50 6 Conclusions.............................................53 7 References..............................................54 Table list Table 2-4-1 Electrical resistivity and thermal conductivity of presented HEAs and some conventional metals............22 Figure captions Figure 1-1 Allotropes of carbon-related nanomaterials are revealed in terms of quasi-zero-dimensional C60, quasi-one-dimensional armchair CNT, and two-dimensional graphene, accordingly................................................2 Figure 1-2-1-1 Loading/disloading profile for single-layer graphene. The curve exhibits cubic behavior at high loads (inset)....................................................4 Figure 1-2-1-2 Measured from a graphene/high-Q silicon mechanical oscillators, the resonance frequencies of single-layer graphene grown via chemical vapor deposition are varied with the temperature under the shear modulus (G) of 280 GPa....................................................4 Figure 1-2-2-1 Simulation of electronic dispersion for graphene. The conduction and valence bands are merged each other at the six separated points. These points are so-called K points and can be mainly divided into two different sets of three points each. The points in each set are identical owing to their equivalent reciprocal lattice vectors. The two in-equivalent K and K′ points consist the valley iso-spin degree of freedom in graphene...................................................6 Figure 1-2-2-2ρ(E) as a function of electric field (E) demonstrated in the density of states (DOS) plot, one can see that the zero energy is located at the center of the band subjected to clean graphene...................................................6 Figure 1-2-3-1 Schematic of the experimental details reveals the excited laser focused on the graphene suspended across a gap...............................................8 Figure 1-2-3-2 Photocurrent generator performs the high-frequency characteristics of the MGM in photodetecting purpose at a data rate of 10 Gbit with 1.55-mm light excitation.................................................9 Figure 2-2-1 The schemes of crystallization, segregation, and amorphous solids......................................12 Figure 2-2-2 The Smix vs. N plot for a well-mixed melting process...................................................13 Figure 2-2-3 The f.c.c. unit cells for pure nickel and Al0.25CoCrFeNi high entropy...............................13 Figure 2-3-1 XRD patterns of Cu–Ni–Al–Co–Cr–Fe–Si alloy system demonstrated with increasing the incorporated alloying elements.........................................16 Figure 2-3-2 Hardness/lattice constant vs. x values in CuCoNiCrAlxFe alloy system: hardness of CuCoNiCrAlxFe alloys (A), lattice constants of an FCC phase (B), lattice constants of a BCC phase (C)..............................17 Figure 2-4-1 The engineering stress-strain curves of NbCrMo0.5Ta0.5TiZr alloy samples at 296 K, 1073 K, 1273 K, and 1473 K (Obtained from HIPd-compression method ).......18 Figure 2-4-2 The adhesive wear resistance vs. hardness plot measured from Pin-on-disk method. The codes of Co1.5CrFeNi1.5Ti0.5, Al0.2Co1.5CrFeNi1.5Ti0.5, Co1.5CrFeNi1.5Ti, and Al0.2Co1.5CrFeNi1.5Ti alloys are Al00Ti05, Al02Ti05, Al00Ti10, and Al02Ti10, respectively..............................................19 Figure 2-4-3 Thermal diffusivity vs. temperature plot for Al and HEAs. HEA-a, HEA-b, HEA-c, and HEA-d are composed of Al0.3CrFe1.5MnNi0.5, Al0.5CrFe1.5MnNi0.5, Al0.3CrFe1.5MnNi0.5Mo0.1, and Al0.3CrFe1.5MnNi0.5Mo0.1, respectively..............................................21 Figure 4-1 Graphene grown via CVD. Step-1: to anneal the sample. Step-2: to flow the precursor into the tube. Step-3: after ceasing the source of precursor, the sample was moved out from the furnace using a magnetic force. Notice the overall Steps are purged with H2 in 2 × 10-1 torr......................................................27 Figure 5-1 XRD profiles of S0.5 (dark), S1.0 (red) and S1.5 (blue) (a), and corresponding electron backscattered images (b-d). Insert shows enhanced (200) reflection and the d and id denote dentrite and interdentrite structures...........30 Figure 5-2 2D/G mapping profiles of G0.5/S0.5 (a), G1.0/S1.0 (b) G1.5/S1.5 (c) and D/G mapping of G1.5/S1.5 (d). Raman spectra obtained from labeled regions in mapping profiles (e). Band intensity of 2D/G (red), D/G (dark) and FWHM (blue) at regions-A, -C, -E and -G (f)...............33 Figures 5-3-1 AFM images of G0.5 (a), G1.0 (c), G1.5 (e) and corresponding surface roughness profiles (b, d and f)........................................................37 Figures 5-3-2 Bright-field TEM images of G0.5/S0.5 (a) G1.0/S1.0 (c), G1.5/S1.5 (e) and corresponding ED (b, d and f) at Gx/Sx interfaces. Inserts show enhanced images of yellow rectangles labeled in (a) and (c), respectively....38 Figures 5-3-3 In-situ electron diffraction (ED) patterns. (a), (c), and (e) obtained from G0.5/S0.5, G1.0/S1.0, and G1.5/S1.5 interfaces while (b), (d), and (e) captured from S0.5, S1.0, and S1.5 substrates...........................39 Figure 5-4-1 STM image obtained from G0.5 (a), Moiré fringes established from S0.5 (110) plane (b), the fast Fourier transform image (c), and the sketch of S0.5 (110) graphene (yellow) rotated by 23° with respect to S0.5 (110) plane (grey) (d). Arrow denotes spacing between Moiré fringes. Insert shows enlarged image of yellow rectangle marked in (c).............................................43 Figure 5-4-2 Optical images obtained from G0.5 deposited onto SiO2/Si substrate (arrow 1) and graphene and graphite based on reman mapping are denoted as arrows 2 and 3 (insert). Arrow 4 is remaining HEA particles..............44 Figures 5-5 XPS spectra of Cu (a), Fe (b), Co (c), Ni (d), Mn (e) and C (f). Insert highlights C-1s peaks from Gx........................................................47 Figure 5-6 Field emission profiles of Gx/Sx (a), corresponding F-N plots (b) and emission structures from a single-, few- and multi-layer graphene (c). Inserts: enlarged profiles.........................................49 Figure 5-7 Growth mechanism of graphene on Sx. Step-1: thermal decomposition of hydrocarbons on Sx. Step-2: carbon adsorption onto Sx. Step-3: carbon dissolution into substrate. Step-4: cooling induced lattice contraction and carbon diffusion to Sx surfaces. Step-5: networking of surface carbon species....................................52

    [1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
    [2] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.
    [3] X. Wang, Q. Li, J. Xie, Z. Jin, J. Wang, Y. Li, K. Jiang, S. Fan, Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates, Nano Letters, 9 (2009) 3137-3141.
    [4] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
    [5] K.S. Novoselov, Graphene: Materials in the Flatland (Nobel Lecture), Angewandte Chemie International Edition, 50 (2011) 6986-7002.
    [6] A.K. Geim, Random Walk to Graphene (Nobel Lecture), Angewandte Chemie International Edition, 50 (2011) 6966-6985.
    [7] N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: An Emerging Electronic Material, Advanced Materials, 24 (2012) 5782-5825.
    [8] I.W. Frank, D.M. Tanenbaum, A.M. van der Zande, P.L. McEuen, Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B, 25 (2007) 2558-2561.
    [9] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321 (2008) 385-388.
    [10] X. Liu, T.H. Metcalf, J.T. Robinson, B.H. Houston, F. Scarpa, Shear Modulus of Monolayer Graphene Prepared by Chemical Vapor Deposition, Nano Letters, 12 (2012) 1013-1017.
    [11] J.C. Slonczewski, P.R. Weiss, Band Structure of Graphite, Physical Review, 109 (1958) 272-279.
    [12] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics, 81 (2009) 109-162.
    [13] H. Alireza, S.A. Jafari, RKKY interaction in heavily vacant graphene, Journal of Physics: Condensed Matter, 25 (2013) 375501.
    [14] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146 (2008) 351-355.
    [15] X. Du, I. Skachko, A. Barker, E.Y. Andrei, Approaching ballistic transport in suspended graphene, Nat Nano, 3 (2008) 491-495.
    [16] M. Monteverde, C. Ojeda-Aristizabal, R. Weil, K. Bennaceur, M. Ferrier, S. Guéron, C. Glattli, H. Bouchiat, J.N. Fuchs, D.L. Maslov, Transport and Elastic Scattering Times as Probes of the Nature of Impurity Scattering in Single-Layer and Bilayer Graphene, Physical Review Letters, 104 (2010) 126801.
    [17] E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, F. Guinea, Limits on Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons, Physical Review Letters, 105 (2010) 266601.
    [18] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, 8 (2008) 902-907.
    [19] K. Saito, J. Nakamura, A. Natori, Ballistic thermal conductance of a graphene sheet, Physical Review B, 76 (2007) 115409.
    [20] Q. Liang, X. Yao, W. Wang, Y. Liu, C.P. Wong, A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials, ACS Nano, 5 (2011) 2392-2401.
    [21] E.J.H. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, K. Kern, Contact and edge effects in graphene devices, Nature Nanotechnology, 3 (2008) 486-490.
    [22] F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.-m. Lin, J. Tsang, V. Perebeinos, P. Avouris, Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor, Nano Letters, 9 (2009) 1039-1044.
    [23] J. Park, Y.H. Ahn, C. Ruiz-Vargas, Imaging of Photocurrent Generation and Collection in Single-Layer Graphene, Nano Letters, 9 (2009) 1742-1746.
    [24] F.N. Xia, T. Mueller, Y.M. Lin, P. Avouris, Ieee, Ultrafast Graphene Photodetector, Ieee, New York, 2010.
    [25] T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, Role of contacts in graphene transistors: A scanning photocurrent study, Physical Review B, 79 (2009) 245430.
    [26] T. Mueller, F.N.A. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications, Nature Photonics, 4 (2010) 297-301.
    [27] C.A. Gearhart, Einstein before 1905: The early papers on statistical mechanics, American Journal of Physics, 58 (1990) 468-480.
    [28] A.R. Ruffa, Thermal potential, mechanical instability, and melting entropy, Physical Review B, 25 (1982) 5895-5900.
    [29] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials, 6 (2004) 299-303.
    [30] J.W. Yeh, Recent progress in high-entropy alloys, Annales De Chimie-Science Des Materiaux, 31 (2006) 633-648.
    [31] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897.
    [32] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials Chemistry and Physics, 103 (2007) 41-46.
    [33] Y. Zhang, Mechanical Properties and Structures of High Entropy Alloys and Bulk Metallic Glasses Composites, in: J.F. Nie, A. Morton (Eds.) Pricm 7, Pts 1-3, 2010, pp. 1058-1061.
    [34] C.W. Tsai, M.H. Tsai, J.W. Yeh, C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, Journal of Alloys and Compounds, 490 (2010) 160-165.
    [35] F.J. Wang, Y. Zhang, G.L. Chen, H.A. Davies, Cooling Rate and Size Effect on the Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy, Journal of Engineering Materials and Technology-Transactions of the Asme, 131 (2009).
    [36] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 36A (2005) 1263-1271.
    [37] Y. Zhang, X. Yang, P.K. Liaw, Alloy Design and Properties Optimization of High-Entropy Alloys, Jom, 64 (2012) 830-838.
    [38] A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 533 (2012) 107-118.
    [39] T.T. Shun, Y.C. Du, Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi high entropy alloy, Journal of Alloys and Compounds, 479 (2009) 157-160.
    [40] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Applied Physics Letters, 90 (2007) -.
    [41] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Materials Science and Engineering: A, 529 (2011) 311-320.
    [42] K.-H. Cheng, C.-H. Lai, S.-J. Lin, J.-W. Yeh, Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering, Thin Solid Films, 519 (2011) 3185-3190.
    [43] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia, 59 (2011) 6308-6317.
    [44] T. Saito, Electrical resistivity and magnetic properties of Nd–Fe–B alloys produced by melt-spinning technique, Journal of Alloys and Compounds, 505 (2010) 23-28.
    [45] Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, S.-J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys, Journal of Alloys and Compounds, 509 (2011) 1607-1614.
    [46] C.-L. Lu, S.-Y. Lu, J.-W. Yeh, W.-K. Hsu, Thermal expansion and enhanced heat transfer in high-entropy alloys, Journal of Applied Crystallography, 46 (2013) 736-739.
    [47] M.-H. Tsai, Physical Properties of High Entropy Alloys, Entropy, 15 (2013) 5338-5345.
    [48] H.-P. Chou, Y.-S. Chang, S.-K. Chen, J.-W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Materials Science and Engineering B-Advanced Functional Solid-State Materials, 163 (2009) 184-189.
    [49] W.M.L.D.R. Haynes, CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, CRC Press, Boca Raton, Fla., 2011.
    [50] W.F. Gale, T.C. Totemeier, Smithells Metals Reference Book, Elsevier Science, 2003.
    [51] J.F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, Third Edition, Taylor & Francis, 2000.
    [52] Y. Li, H.Y. Bai, Superconductivity in a representative Zr-based bulk metallic glass, Journal of Non-Crystalline Solids, 351 (2005) 2378-2382.
    [53] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48 (2000) 279-306.
    [54] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature, 459 (2009) 820-823.
    [55] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science, 313 (2006) 951-954.
    [56] S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, J. Robertson, Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes, Diamond and Related Materials, 13 (2004) 1171-1176.
    [57] M.F. Craciun, RussoS, YamamotoM, J.B. Oostinga, A.F. Morpurgo, TaruchaS, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat Nano, 4 (2009) 383-388.
    [58] X. Liu, L. Fu, N. Liu, T. Gao, Y. Zhang, L. Liao, Z. Liu, Segregation Growth of Graphene on Cu–Ni Alloy for Precise Layer Control, The Journal of Physical Chemistry C, 115 (2011) 11976-11982.
    [59] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Journal of Alloys and Compounds, 488 (2009) 57-64.
    [60] S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, J.-W. Yeh, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Materials Science and Engineering: A, 527 (2010) 5818-5825.
    [61] Y.-F. Kao, S.-K. Chen, J.-H. Sheu, J.-T. Lin, W.-E. Lin, J.-W. Yeh, S.-J. Lin, T.-H. Liou, C.-W. Wang, Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys, International Journal of Hydrogen Energy, 35 (2010) 9046-9059.
    [62] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Applied Physics Letters, 90 (2007) 181904.
    [63] Y.L. Chou, J.W. Yeh, H.C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science, 52 (2010) 2571-2581.
    [64] R.J. Nemanich, S.A. Solin, First- and second-order Raman scattering from finite-size crystals of graphite, Physical Review B, 20 (1979) 392-401.
    [65] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, 53 (1970) 1126-1130.
    [66] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61 (2000) 14095-14107.
    [67] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon, Physical Review B, 64 (2001) 075414.
    [68] C. Thomsen, S. Reich, Double Resonant Raman Scattering in Graphite, Physical Review Letters, 85 (2000) 5214-5217.
    [69] M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman relaxation length in graphene, Carbon, 48 (2010) 1592-1597.
    [70] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces, Nano Letters, 10 (2010) 1542-1548.
    [71] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, 319 (2008) 1229-1232.
    [72] H. Park, P.R. Brown, V. Bulović, J. Kong, Graphene As Transparent Conducting Electrodes in Organic Photovoltaics: Studies in Graphene Morphology, Hole Transporting Layers, and Counter Electrodes, Nano Letters, 12 (2011) 133-140.
    [73] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, 9 (2008) 30-35.
    [74] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, Eklund, Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films, Nano Letters, 6 (2006) 2667-2673.
    [75] T. Kato, R. Hatakeyama, Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars, Nat Nano, 7 (2012) 651-656.
    [76] G. Radhakrishnan, J.D. Cardema, P.M. Adams, H.I. Kim, B. Foran, Fabrication and Electrochemical Characterization of Single and Multi-Layer Graphene Anodes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 159 (2012) A752-A761.
    [77] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen, L.-J. Li, Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition, Nano Letters, 11 (2011) 3612-3616.
    [78] C. Vecchio, S. Sonde, C. Bongiorno, M. Rambach, R. Yakimova, V. Raineri, F. Giannazzo, Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001), Nanoscale Research Letters, 6 (2011) 269.
    [79] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V. Saraf, D. Hu, J. Zhang, G.L. Graff, J. Liu, M.A. Pope, I.A. Aksay, Ternary Self-Assembly of Ordered Metal Oxide−Graphene Nanocomposites for Electrochemical Energy Storage, ACS Nano, 4 (2010) 1587-1595.
    [80] W. Lu, R. Barbosa, E. Clarke, K. Eyink, L. Grazulis, W.C. Mitchel, J.J. Boeckl, Interface Oxidative Structural Transitions in Graphene Growth on SiC (0001), The Journal of Physical Chemistry C, 116 (2012) 15342-15347.
    [81] W. Norimatsu, M. Kusunoki, Transitional structures of the interface between graphene and 6H–SiC (0 0 0 1), Chemical Physics Letters, 468 (2009) 52-56.
    [82] H. Yoon, T. Kang, J.M. Lee, S.-i. Kim, K. Seo, J. Kim, W.I. Park, B. Kim, Epitaxially Integrating Ferromagnetic Fe1.3Ge Nanowire Arrays on Few-Layer Graphene, The Journal of Physical Chemistry Letters, 2 (2011) 956-960.
    [83] X. Weng, J.A. Robinson, K. Trumbull, R. Cavalero, M.A. Fanton, D. Snyder, Structure of few-layer epitaxial graphene on 6H-SiC(0001) at atomic resolution, Applied Physics Letters, 97 (2010) 201905-201903.
    [84] S. Marchini, S. Günther, J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001), Physical Review B, 76 (2007) 075429.
    [85] H.I. Rasool, E.B. Song, M. Mecklenburg, B.C. Regan, K.L. Wang, B.H. Weiller, J.K. Gimzewski, Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals, Journal of the American Chemical Society, 133 (2011) 12536-12543.
    [86] H.I. Rasool, E.B. Song, M.J. Allen, J.K. Wassei, R.B. Kaner, K.L. Wang, B.H. Weiller, J.K. Gimzewski, Continuity of Graphene on Polycrystalline Copper, Nano Letters, 11 (2010) 251-256.
    [87] Y. Zhang, T. Gao, Y. Gao, S. Xie, Q. Ji, K. Yan, H. Peng, Z. Liu, Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy, ACS Nano, 5 (2011) 4014-4022.
    [88] I. Jeon, H. Yang, S.-H. Lee, J. Heo, D.H. Seo, J. Shin, U.I. Chung, Z.G. Kim, H.-J. Chung, S. Seo, Passivation of Metal Surface States: Microscopic Origin for Uniform Monolayer Graphene by Low Temperature Chemical Vapor Deposition, ACS Nano, 5 (2011) 1915-1920.
    [89] L. Gao, J.R. Guest, N.P. Guisinger, Epitaxial Graphene on Cu(111), Nano Letters, 10 (2010) 3512-3516.
    [90] P. Jacobson, B. Stöger, A. Garhofer, G.S. Parkinson, M. Schmid, R. Caudillo, F. Mittendorfer, J. Redinger, U. Diebold, Nickel Carbide as a Source of Grain Rotation in Epitaxial Graphene, ACS Nano, 6 (2012) 3564-3572.
    [91] T. Gao, S. Xie, Y. Gao, M. Liu, Y. Chen, Y. Zhang, Z. Liu, Growth and Atomic-Scale Characterizations of Graphene on Multifaceted Textured Pt Foils Prepared by Chemical Vapor Deposition, ACS Nano, 5 (2011) 9194-9201.
    [92] R.S. Weatherup, B.C. Bayer, R. Blume, C. Ducati, C. Baehtz, R. Schlögl, S. Hofmann, In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth, Nano Letters, 11 (2011) 4154-4160.
    [93] G.G. Jernigan, B.L. VanMil, J.L. Tedesco, J.G. Tischler, E.R. Glaser, A. Davidson, P.M. Campbell, D.K. Gaskill, Comparison of Epitaxial Graphene on Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production, Nano Letters, 9 (2009) 2605-2609.
    [94] R.K. Tandon, R. Payling, B.E. Chenhall, P.T. Crisp, J. Ellis, R.S. Baker, Application of X-ray photoelectron spectroscopy to the analysis of stainless-steel welding aerosols, Applications of Surface Science, 20 (1985) 527-537.
    [95] J. Haber, L. Ungier, On chemical shifts of ESCA and Auger lines in cobalt oxides, Journal of Electron Spectroscopy and Related Phenomena, 12 (1977) 305-312.
    [96] A.N. Mansour, Characterization of NiO by XPS, Surface Science Spectra, 3 (1994) 231-238.
    [97] K.S. Kim, N. Winograd, X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment, Surface Science, 43 (1974) 625-643.
    [98] J.-L. Li, K.N. Kudin, M.J. McAllister, R.K. Prud’homme, I.A. Aksay, R. Car, Oxygen-Driven Unzipping of Graphitic Materials, Physical Review Letters, 96 (2006) 176101.
    [99] Y. Zhao, G. Zhu, Z. Cheng, Thermal analysis and kinetic modeling of manganese oxide ore reduction using biomass straw as reductant, Hydrometallurgy, 105 (2010) 96-102.
    [100] D.D.B. Williams, C.B. Carter, Transmission Electron Microscopy 4 Vol Set: A Textbook for Materials Science, Plenum Press, 1996.
    [101] J. Dong, B. Zeng, Y. Lan, S. Tian, Y. Shan, X. Liu, Z. Yang, H. Wang, Z.F. Ren, Field Emission from Few-Layer Graphene Nanosheets Produced by Liquid Phase Exfoliation of Graphite, Journal of Nanoscience and Nanotechnology, 10 (2010) 5051-5055.
    [102] Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.-M. Cheng, Field Emission of Single-Layer Graphene Films Prepared by Electrophoretic Deposition, Advanced Materials, 21 (2009) 1756-1760.
    [103] C. Wu, F. Li, Y. Zhang, T. Guo, Field emission from vertical graphene sheets formed by screen-printing technique, Vacuum, 94 (2013) 48-52.
    [104] C. Wu, F. Li, Y. Zhang, T. Guo, Effectively improved field emission for graphene film by mechanical surface modification, Thin Solid Films, 544 (2013) 399-402.
    [105] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles, Nature, 388 (1997) 52-55.
    [106] A. Takeuchi, A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, MATERIALS TRANSACTIONS, 46 (2005) 2817-2829.
    [107] S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking, ACS Nano, 2 (2008) 572-578.
    [108] S. Bhaviripudi, X. Jia, M.S. Dresselhaus, J. Kong, Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst, Nano Letters, 10 (2010) 4128-4133.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE