簡易檢索 / 詳目顯示

研究生: 鍾欣家
Hsin-Chia Chung
論文名稱: 蜂巢式行動通訊系統使用道路資訊協助之最大似然法則進行相關性遮蔽信號環境中之路徑追蹤研究
Road Information Aided Maximum Likelihood Route Tracking for Mobile Cellular Systems in Correlated Shadowing Environments
指導教授: 蔡育仁
Yuh-Ren Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 74
中文關鍵詞: 相關性遮蔽信號信號強度最大似然法則道路資訊
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近日來,精確追蹤行動用戶端的位置在許多的應用方面已經受到越來越多的注意。在這篇論文中,我們提出了一個在無線通訊系統中,有關於追蹤行動用戶端移動位置的演算法,這個提案是建立在最大似然法的估計理論上。這篇論文的第一部份是討論有關考慮在相關性遮蔽信號環境中,採用多個不同基地台所接收到的信號強度做為量測資料,以最大似然估計理論的演算法來估計一段單一的行動用戶移動路徑。接著在第二部份,引進道路資訊的概念做為路徑追蹤的輔助資料,則可以偵測由許多片段組合而成的一條行動用戶端完整的移動路徑。關於這個追蹤行動用戶完整路徑的演算法,是由兩種不同的估計與檢測理論組合而成的來運作的:第一種是前文所提追蹤一段單一路徑的演算法,而另一種則是在引進相關的道路資訊後,在每一個道路的交叉路口對於不同的移動方向,使用最大似然假設檢定法則來追蹤行動用戶的位置。
    藉由執行程式的模擬結果中可以觀察得到,如果用來估計行動用戶移動性的追蹤步數越多,或是採用更多基地台所收到信號強度的資料,亦即得到的觀察量越多;則對於行動用戶端移動路徑的追蹤將能得到更精確的估計結果。然而,雖然單一片段目標行動用戶移動路徑追蹤的演算法則,並沒辦法得到精確的偵測結果,但是當加入了道路資訊的輔助之後,在考慮相關性遮蔽信號環境的蜂巢式行動通訊系統中,則可以完美無誤的追蹤到行動用戶端一整段完整的移動路徑。


    Recently, accurate location information of mobile stations (MSs) is desired for more and more applications. This thesis presents a proposal of a MS location tracking algorithm based on the maximum likelihood (ML) function in wireless cellular systems. The first part of this algorithm adopts measurements of uplink received signal strength (RSS) in a correlated shadowing environment to track a single path based on ML estimation. Aided with road information, the whole MS moving route, consisting of multiple moving paths, is then reconstructed by the mixed algorithm of the single path tracking combined with the detection of moving directions on road intersections by ML hypothesis testing.
    The observations from the simulation results show that, if the larger measuring data of tracking-step is adopted or more measurements from different BSs are gathered, then the better tracking performance will be achieved. Although the single path tracking may not exactly trace each moving segment of a target, with the help of road information the whole route can still be perfectly detected without any loss in the correlated shadowing microcellular environments.

    Abstract 1 Contents 2 Chapter 1 Introduction 4 Chapter 2 System and Propagation Models 7 2.1 System and Mobility Models 7 2.2 Path Loss Model 8 2.2.1 Path Loss and System Models 8 2.2.2 Linear Approximation for Path Loss 8 2.3 Correlated Shadowing Model 10 2.3 Signal Strength 12 2.4 Distribution of RSS difference 12 2.4.1 Distribution of Shadowing Difference 12 2.4.2 Difference of Signal Strength 14 2.4.3 Transform Signal Strength Difference li (n) into Linear Form 15 2.4.4. Distribution of RSS Difference 15 Chapter 3 Maximum Likelihood (ML) Functions 17 3.1 RSS-Based Maximum Likelihood Function 17 3.2 RSS Difference-Based Maximum Likelihood Function 20 Chapter 4 Path Tracking Based On Minimize Object Functions fRSS and fdiff With Respect To and 22 4.1 Path Tracking via Known MS Moving Speed with the Measurements of RSS 22 4.1.1 Assumptions 22 4.1.2 Minimize with Argument by Lagrange Method 23 4.2 Path Tracking via Unknown MS Moving Speed with the Measurements of RSS 27 4.2.1 Assumptions 27 4.2.2 Differentiation of Covariance Matrix 28 4.2.3 Minimize with Argument by Karush-Kuhn-Tucker (KKT) Theorem 32 4.3 Path Tracking via Known MS Moving Speed with Measurements of RSS Difference 36 4.3.1 Assumptions 37 4.3.2 Minimize with Argument by Lagrange Method 37 Chapter 5 Road Information Aided MS Route Tracking 42 5.1 Corner Effect 42 5.2 Road Information Aided MS Route Estimation 46 5.2.1 Maximum Likelihood Function Corresponding to Corner Effect 46 5.2.2 Detection of MS Route in Microcellular Systems 46 Chapter 6 Simulation Results & Discussions 48 6.1 Simulation Settings 48 6.2 Performances of ML Path Tracking via Lagrange and KKT Methods 49 6.2.1 RSS-based ML Path Tracking with Known MS Speed via Lagrange Method 49 6.2.2 RSS-Difference-based ML Path Tracking with Known MS Speed via Lagrange Method 53 6.2.3 RSS-based ML Path Tracking with Unknown MS Speed via KKT Method 57 6.3 Performance of ML Path Tracking with Respect to MS Moving Direction θ 61 6.3.1 Occurrence Probability of RSS-based Lagrange 61 6.3.2 Estimated Error for Different Tracking-step 64 6.3.3 Effects of Different Shadowing Standard Deviation 67 6.4 Performance of Road Information Aided ML Route Tracking 69 Chapter 7 Conclusions 71 Bibliography 72

    [1] Masato Aso, Manabu Kawabata and Takeshi Hattori, “A New Location Estimation Method based on Maximum Likelihood Function in Cellular Systems,” IEEE Vehicular Technology Conference, October 2001.
    [2] Masato Aso, Manabu Kawabata and Takeshi Hattori, “Maximum Likelihood Method in Sector Cell Systems,” IEEE Vehicular Technology Conference, pp. 1192-1196746 Vol.2, 2002.
    [3] Masato Aso, Manabu Kawabata and Takeshi Hattori, “Maximum Likelihood Location Estimation Using Signal Strength and the Mobile Station Speed in Cellular Systems”, IEEE Vehicular Technology Conference, pp. 742 - 746 Vol.2, Fall 2003.
    [4] Gordon L. Stuber, Principles of Mobile Communication, Second Edition. KAP, 1996.
    [5] Kay, Fundamentals of Statistical Signal Processing Estimation Theory, PTR Prentice-Hall, 1993.
    [6] Edwin K.P. Chong, Stanislaw. Zak, An Introduction to Optimization, Second Edition. John Wiley & Sons, 2001.
    [7] Alminas Civilis, Christian S. Jensen, “Techniques for Efficient Road-Network-Based Tracking of Moving Objects,” IEEE Transaction on Knowledge and Data Engineering, Vol. 17. NO 5, pp. 698 - 712, May 2005.
    [8] S. Chia, R. Steele, E. Green, and A. Baran, “Propagation and Bit-error Ratio Measurements for a Microcellular System,” J. Inst. Electron. Radio Eng. (UK), Vol. 57, pp. 255-266, November 1987.
    [9] A.M.D. Turkmani, J.D. Parsons, F. Ju, and D. G. Lewis, “Microcellular Radio Measurements at 900, 1500, and 1800 MHz,” in 5th Int. Conf. on Mobile Radio and Personal Communications, Coventry, UK, pp.65-68, December 1989.
    [10] F. Lotse and A. Wejke, ”Propagation Measurements for Microcells in Central Stockholm,” IEEE Veh. Technol. Conf., Orlando, FL, pp.539-541, May 1990.
    [11] A. Murase, I.C. Symington, and E. Green, “Handover Criterion for Macro and Microcellular Systems,” IEEE Veh. Technol. Conf., Saint Louis, MO, pp. 524-530, May 1991.
    [12] A. Rustako, N. Amitay, G. Owens, and R. Roman, “Radio Propagation at Microwave Frequencies for Line-of-sight Microcellular Mobile and Personal Communications,” IEEE Trans. Veh. Technol., Vol. 40, pp. 203-210, February 1991.
    [13] M. Hata and T. Nagatsu, “Mobile Location Using Signal Strength Measurements in Cellular Systems,” IEEE Trans. Veh. Technol., Vol. 29, pp.245-251, 1980.
    [14] M. Gudmundson, Analysis of handover algorithms in cellular radio systems, Report NO. TRITA-TTT-9107, Royal Institute of Technology, Stockholm, Sweden, April 1991.
    [15] M. Marsan and G. Hess, “Shadow Variability in an Urban Land Mobile Radio Environment,” Electronics Letters, Vol. 26, pp. 646-648, May 1990.
    [16] K. Imamura and A. Murase, “Mobile Communication Control Using Multi-transmitter simul/sequential casting (MSSC),” IEEE Veh. Technol. Conf., Dallas, TX, pp. 334-341, May 1986.
    [17] M. Gudmundson, “Correlation Model for Shadow Fading in Mobile Radio Systems,” Electronics Letters, Vol. 27, pp. 2145-2146, November 1991.
    [18] M. Gudmundson, “Analysis of Handover Algorithms,” IEEE Veh. Technol. Conf., Saint Louis, MO, pp. 537-541, May 1991.
    [19] Ding-Bing Lin and Rong-Terng Juang, “Mobile Location Estimation Based on Differences of Signal Attenuations for GSM Systems,” IEEE Trans. Veh. Technol. Vol. 54, NO. 4, July 2005.
    [20] Martin Hellebrandt and Rudolf Mathar, “Location Tracking of Mobiles in Cellular Radio Networks,” IEEE Trans. Veh. Technol., Vol. 48, NO. 5, Sep. 1999.
    [21] Brian L. Mark and Zainab R. Zaidi, “Robust Mobility Tracking for Cellular Networks,” Proc. of the IEEE Intl. Communications Conf., pp. 445-449, May 2002.
    [22] Zainab R. Zaidi and Brian L. Mark, “Real-Time Mobility Algorithms for Cellular Networks Based on Kalman filtering,” IEEE Trans. on Mobile Computing, Vol. 4, NO. 2, March/April 2005.
    [23] C. Drane, M. macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., Vol. 36, NO. 4, pp. 46-55, April 1998.
    [24] J. J. Caffery and G. L. Stuber, “Overview of Radiolocation in CDMA Cellular Systems,” IEEE Commun. Mag., Vol. 36, pp. 38-45, April 1998.
    [25] Y. Zhao, “Mobile Phone Location Determination and Its Impact on Intelligent Transportation Systems,” IEEE Trans. Intell. Transp. Syst., Vol. 1, pp. 55-64, March 2000.
    [26] S. Sakagami, S. Aoyama, K. Kuboi, S. Shirota, and A. Akeyama, “Vehicle Position Estimates by Multibeam Antennas in Multipath Environments,” IEEE Trans. Veh. Technol., vol. 41, pp. 63–68, Feb. 1992.
    [27] L. Cong and W. Zhuang, “Hybrid TDOA / AOA Mobile User Location for Wideband CDMA Cellular Systems,” IEEE Trans. Wireless Con., Vol. 1, pp. 1439-1447, July 2002.
    [28] J. C. Liberti Jr. and T. S. Rappaport, Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications. New York, NY: Prentice-Hall, 1999.
    [29] J. B. Tsui, Fundamentals of Global Positioning System Receivers: A software approach, John Wiley & Sons, New York, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE