研究生: |
蔣奇廷 Chiang, Chi-Ting |
---|---|
論文名稱: |
四氧化三鐵奈米粒子之同調性X光繞射顯微術研究 Study of Fe3O4 Nanoparticles by Coherent X-ray Diffraction Imaging |
指導教授: |
黃迪靖
Huang, Di-Jing 李志浩 Lee, Chih-Hao |
口試委員: |
陳至信
Chen, Jyh-Shin 黃玉山 Huang, Yu-Shan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 同調性X光繞射成像 、相位問題 、四氧化三鐵 、超取樣 、相位恢復演算法 、同步輻射 |
外文關鍵詞: | Coherent X-ray Diffraction Imaging, phase problem, Fe3O4, oversampling, Phase retrieval algorithm, Synchrotron |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
同調性X光繞射成像技術是一個極具潛力的新一代X光顯微術,此技術與傳統的X光繞射不同,其最大的差異點在於使用高同調性X光做為光源,使用高同調性的X光做為光源可以使我們藉由干涉來得知非週期性樣品的結構,我們甚至可以在布拉格點上量測晶體的三維繞射圖紋來獲得高解析度的材料三維應變場及缺陷資訊,此技術可廣泛應用於半導體異質接面應力分析、半導體材料結構分析等,並以非破壞性方式提供高解析度的應變場以及缺陷資訊,此技術提供了我們許多的研究非週期性樣品以及晶體結構的可能性,所以近年來延伸出了多種形式的同調性X光繞射成像技術來研究不同領域的難題。
本論文示範如何使用同調性X光繞射來進行四氧化三鐵奈米粒子之成像,其內容包括演算法、模擬、儀器以及量測結果分析,提供使用同調性X光繞射成像顯微術之量測方法的經驗。
Coherent X-ray diffraction imaging has a great potential for a new generation of X-ray microscopy. This technique is different from traditional X-ray diffraction. Because the light source is highly coherent, we can measure non-periodic structure by interference. We can even use the interference pattern of a crystal to obtain high-resolution three-dimensional strain field and defect information. This technique can be widely used in semiconductor hetero-interface stress analysis, semiconductor materials structural analysis and so on, and in non-destructive way to provide high-resolution strain field and defect information, so this technique make non-periodic structure can be analyzed and bring many of possibilities for studying crystal structures. In recent years, various forms of coherent X-ray diffraction imaging have been extended for studying the challenges of different areas.
This thesis demonstrates how to use coherent X-ray diffraction for imaging of Fe3O4 nanoparticles, which includes algorithms, simulations, instrumentation, and measurement results to provide experience with coherent X-ray diffraction imaging measurement method.
1. Chapman, H. N.; Nugent, K. A., Coherent lensless X-ray imaging. Nature Photonics 2010, 4 (12), 833-839.
2. Robinson, I.; Harder, R., Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 2009, 8 (4), 291-8.
3. Pfeifer, M. A.; Williams, G. J.; Vartanyants, I. A.; Harder, R.; Robinson, I. K., Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 2006, 442 (7098), 63-6.
4. McBride, W.; O'Leary, N. L.; Allen, L. J., Retrieval of a complex-valued object from its diffraction pattern. Physical Review Letters 2004, 93 (23).
5. Tripathi, A.; Mohanty, J.; Dietze, S. H.; Shpyrko, O. G.; Shipton, E.; Fullerton, E. E.; Kim, S. S.; McNulty, I., Dichroic coherent diffractive imaging. Proceedings of the National Academy of Sciences of the United States of America 2011, 108 (33), 13393-13398.
6. Miao, J. W.; Ishikawa, T.; Robinson, I. K.; Murnane, M. M., Beyond crystallography: Diffractive imaging using coherent x-ray light sources. Science 2015, 348 (6234), 530-535.
7. http://www.ryerson.ca/ kantorek/ele884/coherence.htm.
8. McMorrow, J. A.-N. a. D., Elements of modern x-ray physics. Wiley, New York, NY,2001.
9. Bahaa E. A. Saleh, M. C. T., Fundamentals of Photonics, 2nd Edition. Wiley, New York, NY,2007.
10. Philip Willmott. An Introduction to Synchrotron Radiation: Techniques and
Applications. Wiley,New York, NY, 2011.
11. Andreas Schropp. Experimental coherent x-ray diffractive imaging: Capabilities
and limitations of the technique, 2008.
12. Hsieh, C.-A., Numerical Simulations of Ptychographic Coherent Diffraction Imaging. NTHU, Master's thesis 2015.
13. Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C. M.; Wepf, R.; Bunk, O.; Pfeiffer, F., Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467 (7314), 436-U82.
14. Chapman, H. N., MICROSCOPY A new phase for X-ray imaging. Nature 2010, 467 (7314), 409-410.
15. Maiden, A. M.; Rodenburg, J. M., An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 2009, 109 (10), 1256-1262.
16. Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G.; Dobson, B. R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I., Hard-x-ray lensless imaging of extended objects. Physical Review Letters 2007, 98 (3).
17. Verwey, E. J. W., Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature 1939, 144, 327-328.
18. http://tpsbl.nsrrc.org.tw/bd_page.aspx?lang=en&pid=1037&port=25A.
19. https://en.wikipedia.org/wiki/Friedel%27s_law.
20. Shi, X., Coherent X-ray diffraction imaging and ptychography on
silicon-on-insulator nanostructures. UCL, PhD_thesis 2012.
21. Chang, S.-L., Special Topics on X-ray Diffraction. NTHU, Textbook.
22. Miao, J.; Kirz, J.; Sayre, D., The oversampling phasing method. Acta Crystallographica Section D-Biological Crystallography 2000, 56, 1312-1315.
23. Sayre, D., SOME IMPLICATIONS OF A THEOREM DUE TO SHANNON. Acta Crystallographica 1952, 5 (6), 843-843.
24. Miao, J.; Sayre, D.; Chapman, H. N., Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. Journal of the Optical Society of America a-Optics Image Science and Vision 1998, 15 (6), 1662-1669.
25. Fienup, J. R., RECONSTRUCTION OF AN OBJECT FROM MODULUS OF ITS FOURIER-TRANSFORM. Opt. Lett. 1978, 3 (1), 27-29.
26. Fienup, J. R., PHASE RETRIEVAL ALGORITHMS - A COMPARISON. Applied Optics 1982, 21 (15), 2758-2769.
27. Brown, B. D., COHERENT DIFFRACTION IMAGING (CDI). UCL, Project report 2013.
28. Garcia, J.; Subias, G.; Proietti, M. G.; Renevier, H.; Joly, Y.; Hodeau, J. L.; Blasco, J.; Sanchez, M. C.; Berar, J. F., Resonant "forbidden" reflections in magnetite. Physical Review Letters 2000, 85 (3), 578-581.