簡易檢索 / 詳目顯示

研究生: 袁順緯
Yuan, Shun-Wei
論文名稱: 不同自行車握把型式、握持位置及踩踏分期對於人體上肢手指肌肉活化影響
Effects of Different Bicycle Grip Forms, Holding Positions, and Pedaling Phases on the Activation of Finger Muscles of the Human Upper Limbs
指導教授: 邱文信
Chiu, Wen-Hsin
口試委員: 相子元
Shiang, Tzyy-Yuang
陳家祥
Chen, Chia-Hsiang Chen
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 運動科學系
Physical Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 65
中文關鍵詞: 騎乘姿態手部肌肉自行車車把
外文關鍵詞: riding posture, hand muscles, bicycle handlebars
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:探討自行車騎乘時四種不同握持位置於人因工程式握把與比利時式握把之下臂及手指肌肉活化差異。方法:本研究參與者成年男性20人,每位參與者重複進行兩種握把型式及四種握持位置,以隨機取樣騎乘八次,以DELSYS無線表面肌電測量儀收取慣用手伸腕肌、屈腕肌、第一骨間背側肌、第二骨間背側肌、第三骨間背側肌及第四骨間背側肌共六條肌群,踩踏節奏90±3,功率輸出達200W後平穩 15 秒,收取20秒內中段之肌電訊號,透過MVC肌電訊號標準化,以重複量數變異數分析考驗人因工程式握把和比利時式於四種握持位置及兩種踩踏分期中肌肉活化差異,以Boferronig法事後比較分析,顯著水準 α <.05。結果:在加速期即回復期中上肢肌群皆無顯著差異,而經事後比較第四骨間背側肌於人因工程式握把達顯著差異,第一骨間背側肌、第三骨間背側肌及屈腕肌於握持位置一達顯著差異,第二骨間背側肌握持位置三達顯著差異,第一骨間背側肌與第三骨間背側肌皆於人因工程式握把之位置一與比利時式握把之位置三達顯著差異。結論:不管握持何種握把型式即握持位置下,兩種踩踏分期皆不會影響肌肉活化差異。考慮握把型式下,選擇人因工程式握把以減少手部疲勞;考慮適合握持位置下,為提高騎乘速度和強度可選擇偏下把位置,進行休閒騎乘者可選擇位置一的部分,考慮綜合以上選擇下,可選擇人因工程式握把及握持位置一與位置二較可減輕上肢肌肉之負擔,以降低肌肉活化程度,建議自行車使用者騎乘前,可參考本研究結果。


    Purpose: To investigate the differences in muscle activation of the arm and fingers when using four different hand positions on ergonomic handlebars and Belgian-style handlebars during cycling. Methods: Twenty adult male participants were involved in this study. Each participant cycled eight times using two types of handlebars and four hand positions, with the order of trials randomized. Muscle activity from six muscle groups in the dominant hand (extensor carpi radialis, flexor carpi radialis, first dorsal interosseous, second dorsal interosseous, third dorsal interosseous, and fourth dorsal interosseous muscles) was measured using DELSYS wireless surface electromyography (sEMG). Participants cycled at a cadence of 90 ± 3 rpm and maintained a power output of 200W for 15 seconds. sEMG data were collected for a 20-second period during the mid-point of the trial, and the muscle activity was normalized using maximum voluntary contraction (MVC). Repeated measures ANOVA was used to assess the differences in muscle activation between ergonomic and Belgian-style handlebars across the four hand positions and two cycling phases, with post-hoc comparisons analyzed using the Bonferroni method. Significance level was set at α < 0.05. Results: There were no significant differences in upper limb muscle activation during the acceleration and recovery phases. However, post-hoc comparisons showed significant differences in the fourth dorsal interosseous muscle with the ergonomic handlebar. Significant differences were also found in the first dorsal interosseous, third dorsal interosseous, and flexor carpi radialis muscles at hand position one, and in the second dorsal interosseous muscle at hand position three. Additionally, the first and third dorsal interosseous muscles showed significant differences between hand position one with the ergonomic handlebar and hand position three with the Belgian-style handlebar. Conclusion: Regardless of the type of grip or grip position, the two phases of pedaling do not affect muscle activation differences. When considering the type of grip, choosing an ergonomic grip can reduce hand fatigue. When considering a suitable grip position, selecting a lower grip position can increase riding speed and intensity, while for leisure riding, position one is more appropriate. Considering the combination of the above choices, selecting an ergonomic grip and positions one and two can reduce the burden on the upper limb muscles, thereby lowering the degree of muscle activation. It is recommended that cyclists refer to the results of this study before riding.

    中文摘要 I Abstract II 致謝 IV 表次 VII 圖次 X 第一章 緒論 1 第一節 問題背景 1 第二節 研究目的 3 第三節 研究假設 4 第四節 名詞操作型定義 5 第五節 研究範圍與限制 10 第二章 文獻探討 12 第一節 自行車不同握把型式 12 第二節 自行車握把不同握持位置 15 第三節 自行車騎乘時手指的重要性 16 第四節 自行車踩踏分期 19 第五節 肌電的應用 20 第六節 文獻總結 21 第參章 研究方法 22 第一節 研究架構與流程 22 第二節 研究對象 23 第三節 研究工具 23 第四節 場地布置圖 28 第五節 實驗方法與步驟 29 第六節 統計分析 31 第肆章 結果 32 第一節 各肌肉於不同踩踏分期之肌肉活化差異 33 第二節 第一骨間背側肌於不同握把型式及不同握持位置之肌肉活化差異 35 第三節 第二骨間背側肌於不同握把型式及不同握持位置之肌肉活化差異 39 第四節 第三骨間背側肌於不同握把型式及不同握持位置之肌肉活化差異 42 第五節 第四骨間背側肌於不同握把型式及不同握持位置之肌肉活化差異 46 第六節 屈腕肌於不同握把型式及不同握持位置之肌肉活化差異 48 第七節 伸腕肌於不同握把型式及不同握持位置之肌肉活化差異 49 第伍章 討論與結論 51 第一節 各肌肉於不同踩踏分期之肌肉活化 51 第二節 比對上肢肌群於不同握把型式之肌肉活化 52 第三節 比對上肢肌群於不同握持位置之肌肉活化 54 第四節 比對上肢肌群於不同握把型式與不同握持位置之肌肉活化 56 第五節 結論 58 第六節 建議 59 參考文獻 60

    中華民國交通部公路局 (2020,1月)環島自行車道升級暨多元路線整合推動計畫。https://www.thb.gov.tw/cp.aspx?n=461
    石昇文、羅國城、王苓華 (2009)。棒球投手投擲手部之生物力學。大專體育,(104),108-114。https://doi-org.nthulib-oc.nthu.edu.tw/10.6162/SRR.2009.104.16
    交通部運輸研究所 (2013),東部自行車路網示範計畫之整合評估(初版),連江。https://www.iot.gov.tw/cp-78-11538-c3586-1.html
    吳武政 (2001)。以誘導式歸納途徑法探討自行車騎乘姿勢與車架尺寸之關係〔未出版之碩士論文〕,大同大學,台北市。
    邱文信、黃斯胤、楊振宏 (2013)。探討自行車把手型式對上肢肌群活動之影響。人因工程學刊,15(1),45-51。
    邱敏綺、吳欣潔 (2014)。自行騎乘姿勢對運動學、力學、生理負荷與主觀費力程度之影響。國防管理學報,35(2),57-67。https://www.airitilibrary.com/Article/Detail?DocID=10224858-201411-201412160008-201412160008-57-67
    張國彬、馬軍榮、吳東昇 (2015)。鐵人三項完賽之技術實踐經驗論敘。中華體育季刊,29(4),287-294。https://doi.org/10.3966/102473002015122904005
    陳一郎、何國彰 (2016)。握把高度對自行車騎乘時肌群活動輪換之影響。人因工程學刊,18(2),93-101 https://doi-org.nthulib-oc.nthu.edu.tw/10.6273/JES.2016.18(02).04
    陳羿揚、邱文信、錢明福 (2019)。自行車把手特性於不同路面材質騎乘對人體上肢肌肉活化與振動的影響。體育學報,52(1),83-93。https://doi-org.nthulib-oc.nthu.edu.tw/10.3966/102472972019035201007
    陳家祥、石翔至、相子元 (2015)。最佳的自行車騎乘姿勢。人文社會科學研究:教育類,9(4),1-11。https://doi-org.nthulib-oc.nthu.edu.tw/10.6618/HSSRP.2015.9(4)1
    黃台生 (2009)。公路自行車把手舒適度之研究。設計學報,14(2),51-71。https://doi-org.nthulib-oc.nthu.edu.tw/10.6381/JD.200906.0051
    黃貫倫、吳佳蓉、陳秀榮、陳彥廷、涂瑞洪 (2012)。摺疊自行車振幅對頸部之影響。華人運動生物力學期刊,(7),113-117。https://www-airitilibrary-com.nthulib-oc.nthu.edu.tw/Article/Detail?DocID=20733267-201210-201407070024-201407070024-113-117
    楊承旺 (2019)。探討自行車龍頭豎管調整對於人體肌肉活化及關節角度的影響〔未出版之碩士論文〕。國立清華大學在職班,新竹市。
    劉苓瑩、楊佳政 (2021)。臥推肘關節角度對最大肌力、肌耐力與握力表現之影響〔未出版之碩士論文〕。國立台中教育大學,台中市。
    賴賢源, & 楊旻洲 (1997). 登山自行車握把之人因設計因素研究〔未出版之碩士論文〕,大葉大學工業設計研究所,彰化縣。
    鍾綉貞、張雅嫻、陳俐君、何宜靜 (2010)。城市休閒乘用自行車車手把之人因工程評估。工作與休閒學刊,2(1),19-29。https://doi.org/10.6848/JWL.201009_2(1).0002
    Antequera-Vique , J. A., Oliva-Lozano, J. M., & Muyor, J. M. (2022). Effects of cycling on the morphology and spinal posture in professional and recreational cyclists: a systematic review. Sports Biomechanics, 1-30. https://doi.org/10.1080/14763141.2022.2058990
    Arpinar-Avsar, P., Birlik, G., Sezgin, Ö. C., & Soylu, A. R. (2013). The effects of surface-induced loads on forearm muscle activity during steering a bicycle. Journal of sports science & medicine, 12(3), 512. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772596/
    Ayachi, F. S., Dorey, J. & Guastavino, C. (2015). Identifying factors of bicycle comfort: An online survey with enthusiast cyclists. Applied Ergonomics, 46, 124-136. https://doi.org/10.1016/j.apergo.2014.07.010
    Bentley DJ, Millet GP, Vleck VE, McNaughton LR. (2002). Specific aspects of contemporary triathlon: implications for physiological analysis and performance. Sports Med. 32(6):345-59. https://doi.org/10.2165/00007256-200232060-00001.
    Bressel, E., & Cronin, J. (2005). Bicycle seat interface pressure: reliability, validity, and influence of hand position and workload. Journal of biomechanics, 38(6), 1325-1331. https://doi.org/10.1016/j.jbiomech.2004.06.006
    Burden, A. (2010). How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. Journal of Electromyography and Kinesiology, 20(6), 1023-1035. https://doi.org/10.1016/j.jelekin.2010.07.004
    Chen, C. H., Wu, Y. K., Chan, M. S., Shih, Y., & Shiang, T. Y. (2016). The force output of handle and pedal in different bicycle-riding postures. Research in Sports Medicine, 24(1), 54-66. https://doi.org/10.1080/15438627.2015.1126276
    Chikenji, T., Toda, H., Gyoku, C., Oikawa, N., Katayose, M., & Tsubota, S. (2010). A comparison of the strength of the abduction of the little and index fingers and palmar abduction and opposition of the thumb between college baseball players and inexperienced sports players. Journal of Musculoskeletal Research, 13(02), 75-82. https://doi.org/10.1142/S021895771000246.
    de Vey Mestdagh, K. (1998). Personal perspective: in search of an optimum cycling posture. Applied ergonomics, 29(5), 325-334. https://doi.org/10.1016/S0003-6870(97)00080-X
    Drouet, J. M., Covill, D., & Duarte, W. (2018). On the exposure of hands to vibration in road cycling: an assessment of the effect of gloves and handlebar tape. I Proceedings. 2(6):213. https://doi.org/10.3390/proceedings2060213 da Silva, J. C. L., Tarassova, O., Ekblom, M. M., Andersson, E., Rönquist, G., & Arndt, A. (2016). Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. European journal of applied physiology, 116(9), 1807-1817. https://doi.org/10.1007/s00421-016-3428-5
    Flament, D., Goldsmith, P., Buckley, C. J., & Lemon, R. N. (1993). Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. The Journal of Physiology, 464(1), 361-378. https://doi.org/10.1113/jphysiol.1993.sp019639
    Freund, J., Takala, E. P., & Toivonen, R. (2000). Effects of two ergonomic aids on the usability of an in-line screwdriver. Applied ergonomics, 31(4), 371-376. https://doi.org/10.1016/S0003-6870(00)00005-3
    Hansen, E. A., & Waldeland, H. (2008). Seated versus standing position for maximization of performance during intense uphill cycling. Journal of Sports Sciences, 26(9), 977-984. https://doi.org/10.1080/02640410801910277
    Harnish, C., King, D., & Swensen, T. (2007). Effect of cycling position on oxygen uptake and preferred cadence in trained cyclists during hill climbing at various power outputs. European Journal of Applied Physiology, 99(4), 387-391. https://doi.org/10.1007/s00421-006-0358-7
    Holliday, W., Theo, R., Fisher, J., & Swart, J. (2019). Cycling: Joint kinematics and muscle activity during differing intensities. Sports biomechanics, 1-15. https://doi.org/10.1080/14763141.2019.1640279
    Jansen, C., & McPhee, J. (2020). Predictive dynamic simulation of Olympic track cycling standing start using direct collocation optimal control. Multibody System Dynamics, 1-18. https://doi.org/10.1007/s11044-020-09723-3
    John, C., Trent, L., Nigel, H., Andrew, K., & Daniel, M. T. (2017). A brief review of handgrip strength and sport performance. The Journal of Strength & Conditioning Research, 31(11), 3187-3217. https://doi.org/10.1519/JSC.0000000000002149
    Kotler, D. H., Babu, A. N., & Robidoux, G. (2016). Prevention, evaluation, and rehabilitation of cycling-related injury. Current sports medicine reports, 15(3), 199-206. https://doi.org/10.1249/JSR.0000000000000262
    Kuijt-Evers, L. F. M., Bosch, T., Huysmans, M. A., De Looze, M. P., & Vink, P. (2007). Association between objective and subjective measurements of comfort and discomfort in hand tools. Applied ergonomics, 38(5), 643-654. https://doi.org/10.1016/j.apergo.2006.05.004
    Kwan, M., & Rasmussen, J. (2011). Linking badminton racket design and performance through motion capture. Computer Aided Medical Engineering, 2(1), 13-18.
    Latash, M. L., Scholz, J. P., & Schöner, G. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and sport sciences reviews, 30(1), 26-31. https://doi.org/10.1097/JES.0b013e318258e1c1
    Lee, H., Martin, D. T., Anson, J. M., Grundy, D., & Hahn, A. G. (2002). Physiological characteristics of successful mountain bikers and professional road cyclists. Journal of Sports Sciences, 20(12), 1001-1008. https://doi.org/10.1080/026404102321011760
    Malizia, F., & Blocken, B. (2020). Bicycle aerodynamics: History, state-of-the-art and future perspectives. Journal of Wind Engineering and Industrial Aerodynamics, 200, 104-134. https://doi.org/10.1016/j.jweia.2020.104134
    Merkes PFJ, Menaspà P, Abbiss CR. (2019).Reducing aerodynamic drag by adopting a novel road-cycling sprint position. Int J Sports Physiol Perform, 14(6), 733-738. https://doi.org/10.1123/ijspp.2018-0560
    Nandi, T., Hortobágyi, T., van Keeken, H. G., Salem, G. J., & Lamoth, C. J. (2019).Standing task difficulty related increase in agonist-agonist and agonist-antagonist common inputs are driven by corticospinal and subcortical inputs respectively. Scientific Reports, 9(1), 2439. https://doi.org/10.1038/s41598-019-39197-z
    Padulo, J., Ardigò, L. P., Milić, M., & Powell, D. W. (2016). Electromyographic analysis of riding posture during the bicycling start moment. Motriz: Revista de Educação Física, 22, 0237-0242. https://doi.org/10.1590/S1980-6574201600040003
    Palmer, T. G. (2012). Effects of proximal stability training on sport performance and proximal stability measures.Theses and Dissertations--Rehabilitation Sciences. 9. https://uknowledge.uky.edu/rehabsci_etds/9/
    Richmond DR. Handlebar problems in bicycling. Clinics in Sports Medicine. 1994 Jan;13(1):165-173. http://europepmc.org/abstract/MED/8111850
    Riveros-Matthey, C. D., Carroll, T. J., Lichtwark, G. A., & Connick, M. J. (2023). The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling. Journal of Experimental Biology, 226(13). https://doi.org/10.1242/jeb.245600
    Roseiro, L. M., Neto, M. A., Amaro, A. M., Alcobia, C. J., & Paulino, M. F. (2016). Hand-arm and whole-body vibrations induced in cross motorcycle and bicycle drivers. International journal of industrial ergonomics, 56, 150-160. https://doi.org/10.1016/j.ergon.2016.10.008
    Russ, K. (2011). Towards the Prevention of Handlebar Palsy: The Contribution of Handlebar Shape and Road Grade on Localized Hand Pressures (Doctoral dissertation, The Ohio State University).
    Schaffert, N., Zdzieblo, F., Schlüter, S. & Mattes, K. (2020). Evaluation of the benefits in assisting cyclists to perform the pedal movement with real-time augmented feedback. Movement & Sport Sciences - Science & Motricité, 110, 29-37. https://doi.org/10.1051/sm/2020012
    Silder, A., Gleason, K., & Thelen, D. G. (2011). Influence of bicycle seat tube angle and hand position on lower extremity kinematics and neuromuscular control: implications for triathlon running performance. Journal of applied biomechanics, 27(4), 297-305. https://doi.org/10.1123/jab.27.4.297
    Standring, S., Ellis, H., Healy, J., Johnson, D., Williams, A., Collins, P., & Wigley, C. (2005). Gray's anatomy: the anatomical basis of clinical practice. American journal of neuroradiology, 26(10), 2703.
    Streisfeld, G. M., Bartoszek, C., Creran, E., Inge, B., McShane, M. D., & Johnston, T. (2017). Relationship between body positioning, muscle activity, and spinal kinematics in cyclists with and without low back pain: A systematic review. Sports health, 9(1), 75-79. https://doi.org/10.1177/1941738116676260
    Swart, J., & Holliday, W. (2019). Cycling Biomechanics Optimization—The (R) Evolution of Bicycle Fitting. Current sports medicine reports, 18(12), 490-496. https://pubmed.ncbi.nlm.nih.gov/31834181/
    Turpin, N. A., & Watier, B. (2020). Cycling biomechanics and its relationship to performance. Applied Sciences, 10(12), 4112.https://doi.org/10.3390/app10124112.
    Valenzuela, M., & Bordoni, B. (2024). Anatomy, Shoulder and Upper Limb, Hand Dorsal Interossei Muscle. StatPearls [Internet].
    Waechter, M., Riess, F., & Zacharias, N. (2002). A multibody model for the simulation of bicycle suspension systems. Vehicle System Dynamics, 37(1), 3-28. https://doi.org/10.1076/vesd.37.1.3.3539
    Yum, H., Kim, H., Lee, T., Park, M. S., & Lee, S. Y. (2021). Cycling kinematics in healthy adults for musculoskeletal rehabilitation guidance. BMC musculoskeletal disorders, 22(1), 1044. https://doi.org/10.1186/s12891-021-04905-2

    QR CODE