研究生: |
張嘉宏 Chang, Chia-Hung |
---|---|
論文名稱: |
利用動態博局方法在環境干擾下的免疫反應之強健模式匹配控制設計 Robust Model Matching Control of Immune Response under Environmental Disturbances: Dynamic game Approach |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 病原體-宿主交互作用網路 、強健控制 、動態博局理論 、分子藥物標靶 、需求的免疫反應 、模糊動態博局 |
外文關鍵詞: | pathogen-host interaction network, robust control, dynamic game theory, molecules of drug targets, desired immune response, fuzzy dynamic game |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在未知的初始值、環境干擾和外來病原體入侵下,免疫反應的強健模式匹配控制設計可用在加強藥物的治療上,達到我們所需求的免疫反應。在所有可能未知的初始值、環境干擾和外來病原體入侵的最壞影響之下,我們需要加強免疫反應,伴隨著極小極大化匹配需求的免疫反應是要最小化的。這意思是說設計強健模式匹配控制是來追蹤我們所需求的免疫反應,利用極小極大化匹配的觀點。這個極小極大化匹配的問題可以被轉換成等效的動態博局問題。當外來的病原體和環境的干擾被視為一個玩家,其目的是來增大匹配誤差,治療的藥劑控制考慮成為另一個玩家來減小匹配誤差。由於,先天免疫系統是非線性的,這不是很容易直接用非線性的動態博局方法來解強健模式匹配控制的問題。所以吾人利用模糊模式的方法在不同的操作點之下,透過平滑的糢糊歸屬函數來內插成許多線性的免疫系統,用此方法來近似非線性的先天免疫系統。然後極小極大化匹配控制的問題就可以簡單地轉換成線性的動態博局方法,並且透過Matlab 7.0裡面的LMI toolbox的技術解決出來。最後,有一些計算模擬的例子利用電腦模擬呈現,來驗證此方法的實用及功效。
A robust model matching control of immune response is proposed for therapeutic enhancement to match a prescribed immune response under uncertain initial states and environmental disturbances, including exogenous pathogen input. The worst-case effect of all possible environmental disturbances and uncertain initial states on the min-max matching with a desired immune response is minimized for the enhanced immune system, i.e. the robust min-max model matching control is designed to track a prescribed immune model response from the min-max matching perspective. This min-max matching problem could be transformed to an equivalent dynamic game problem. The exogenous pathogen and environmental disturbances are considered as a player to maximize (worsen) the matching error when the therapeutic control agents are considered as a player to minimize the matching error. Since the innate immune system is highly nonlinear, it is not easy to solve the robust model matching control problem by the nonlinear dynamic game method directly. A fuzzy model is proposed to interpolate several linearized immune systems at different operation points to approximate the innate immune system via smooth fuzzy membership functions. With the help of fuzzy approximation method, the min-max matching control problem of immune systems could be easily solved by linear dynamic game method via the linear matrix inequality (LMI) technique with the help of Robust Control Toolbox in Matlab [3]. Finally, few computational simulation examples are given in silicon to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed method.
[1] Asachenkov,A., Marchuk,G., Mohler,R. and Zuev,S. (1994) Disease Dynamics. Birkhauser, Boston.
[2] Basar, T., Oslder, G.J. (1999) Dynamic non-cooperative game theory. 2nd ed,
The SIAM, Philadelphia, PA
[3] Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V. (1994) Linear Matrix Inequalies in System and Control Theory, Philadelphia, PA: SLAM
[4] Bell,D.J. and Katusiime,F. (1980) A time-optimal drug displacement problem. Optimal Control Applications and Methods, 217-225.
[5] Bellman,R.E. (1983) Mathematical Methods in Medicine. World Scientific, Singapore.
[6] Bonhoeffer,S., May,R.M., Shaw,G.M. and Nowak,M.A. (1997) Virus dynamics and drug therapy. Proc. Natl Acad. Sci. USA. , 6971-6976.
[7] Carson,E.R., Cramp,D.G., Finkelstein,L. and Ingram,D. (1985) Control system concepts and approaches in clinical medicine. In Carson,E.R. and Cramp,D.G. (eds). Computers and Control in Clinical Medicine. Plenum Press, New York, pp. 1-26.
[8] Chen, B. S. Tseng, C. S. and Uang, H. J. (1999) Robustness design of nonlinear uncertain system via fuzzy linear control, IEEE Trans. Fuzzy Systems, Vol. 7, No. 5, pp. 571-585.
[9] Chen, B. S. Chang, C. S. and Wang, H. C. (2000) Mixed H2/ fuzzy output feedback control for nonlienar uncertain systems: LMI approach, IEEE Trans. Fuzzy Systems, Vol. 8, No. 3, pp. 249-265.
[10] Chizeck,H.J. and Katona,P.G. (1985) Closed-loop control. In Carson,E.R. and Cramp,D.G. (eds). Computers and Control in Clinical Medicine. Plenum Press, New York, pp. 95-151.
[11] Gentilini,A., Morari,M., Bieniok,C., Wymann,R. and Schnider,T. (2001) Closed-loop control of analgesia in humans. Proc. IEEE Conf. Decision and Control. Orlando, pp. 861-867.
[12] Janeway,C.A. (2001) In Travers,P., Walport,M. and Shlomchik,M. (eds). Immunobiology. Garland, London.
[13] Jelliffe,R.W. (1986) Clinical applications of pharmacokinetics and control theory: planning, monitoring, and adjusting regimens of aminoglycosides, lidocaine, digitoxin, and digoxin. In Maronde,R.F. (ed.). Topics in Clinical Pharmacology and Therapeutics. Springer, New York, pp. 26-82.
[14] Kirschner,D., Lenhart,S. and Serbin,S. (1997) Optimal control of the chemotherapy of HIV. J. Math. Biol., , 775-792.
[15] Kwong,G.K., Kwok,K.E., Finegan,B.A. and Shah,S.L. (1996) Clinical evaluation of long range adaptive control for mean arterial blood pressure regulation. Proc. Am. Control Conf.. Seattle, pp. 786-790.
[16] Lydyard,P.M., Whelan,A. and Fanger,M.W. (2000) Instant Notes in Immunology. Springer, New York.
[17] Nowak,M.A. and May,R.M. (2000) Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford.
[18] Nowak,M.A., May,R.M., Phillips,R.E., Rowland-Jones,S., Lal-loo,D.G., McAdam,S., Klenerman,P., Köppe,B., Sigmund,K., Bangham,C.R.M. and McMichael,A.J. (1995) Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature, , 606-611.
[19] Parker,R.S., Doyle,III,F.J., Harting,J.E. and Peppas,N.A. (1996) Model predictive control for infusion pump insulin delivery. Proceedings of the 18th Annual Conference of IEEE Engineering in Medicine and Biology Soc.. Amsterdam, pp. 1822-1828.
[20] Perelson,A.S., Neumann,A.V., Markowitz,M., Leonard,J.M. and Ho,D.D. (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell lifespan, and viral generation time. Science, 1582-1586.
[21] Perelson,A.S. (1997) Immunology for physicists. Reviews of Modern Physics. , 1219-1267.
[22] Polycarpou,M.M. and Conway,J.Y. (1996) Modeling and control of drug delivery systems using adaptive neural control methods. Proc. Am. Control Conf.. Seattle, pp. 781-785.
[23] Robinson,D.C. (1986) Topics in Clinical Pharmacology and Therapeutics. In Maronde,R.F. (ed.). Principles of Pharmacokinetics. Springer, New York, pp. 1-12.
[24] Rundell,A., HogenEsch,H. and DeCarlo,R. (1995) Enhanced modeling of the immune system to incorporate natural killer cells and memory. Proc. Am. Control Conf.. Seattle, pp. 255-259.
[25] Schumitsky,A. (1986) Stochastic control of pharmacokinetic systems. In Maronde,R.F. (ed.). Topics in Clinical Pharmacology and Therapeutics. Springer, New York, pp. 13-25.
[26] Stafford,M.A., Cao,Y., Ho,D.D., Corey,L. and Perelson,A.S. (2000) Modeling plasma virus concentration and CD4+ T cell kinetics during primary HIV infection. J. Theo. Biol.. , 285-301.
[27] Stengel,R.F., Ghigliazza,R., Kulkarni,N. and Laplace,O. (2002a) Optimal control of innate immune response. Opt. Control Appl. and Meth.. , 91-104.
[28] Stengel,R.F., Ghigliazza,R. and Kulkarni,N. (2002b) Optimal enhancement of innate immune response. Bioinformatics. , 1227-1235.
[29] Stengel,R.F., and Ghigliazza,R. (2004) Stochastic optimal therapy for enhanced immune response. Math Biosci., 191(2), pp.123-142.
[30] Swan,G.W. (1981) Optimal control applications in biomedical engineering-a survey. Opt. Control Appl. and Meth.. , 311-314.
[31] Takagi, T., Sugeno, M. (1985) Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15 (1), pp. 116-132.
[32] Urszula Foryś (2001) Marchuk's Model of Immune System Dynamics with Application to Tumour Growth. J. Theo. Medicine, 4(1), pp. 85-93.
[33] van Rossum,J.M., Steyger,O., van Uem,T., Binkhorst,G.J. and Maes,R.A.A. (1986) Pharmacokinetics by using mathematical systems dynamics. In Eisenfeld,J. and Witten,M. (eds). Modelling of Biomedical Systems. Elsevier, Amsterdam, pp. 121-126.
[34] Villadsen LS, Skov L, Baadsgaard O. Biological response modifiers and their potential use in the treatment of inflammatory skin diseases. Exp Dermatol. 2003 Feb;12(1):1-10. Review.
[35] Wein,L.M., D’Amato,R.M. and Perelson,A.S. (1998) Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. J. Theo. Biol.. , 81-98.
[36] Wiener,N. (1948) Cybernetics: or Control and Communication in the Animal and the Machine. Technology Press, Cambridge.
[37] Wodarz,D. and Nowak,M.A. (1999) Specific therapy regimes could lead to long-term immunological control of HIV. Proc. Natl Acad. Sci. USA. , 14464-14469.
[38] Wodarz,D. and Nowak,M.A. (2000) CD8 memory, immunodominance, and antigenic escape. Eur. J. Immun.. , 2704-2712.
[39] Zhou, K., Doyle, J.C., Glover, K. (1996) Robust and optimal control Prentice-Hall Inc, Englewood Cliffs, NJ