簡易檢索 / 詳目顯示

研究生: 姚承泰
Yao, Cheng-Thai
論文名稱: 利用雙螺旋二十四面體模板進行無電電鍍製備單螺旋二十四面體奈米金屬材料
Single Gyroid-Nanostructured Metals with Controlled Particle Size from Electroless Plating Using Double Gyroid-Forming Block Copolymer Template
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 洪毓玨
陳明彰
蔡德豪
薛涵宇
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 雙嵌段共聚物無電電鍍單螺旋二十四面體
外文關鍵詞: block copolymers, nickel, gold, electroless plating, single gyroid
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究利用雙螺旋二十四面體多孔高分子模板與掌控無電電鍍之成核成長機制,以創造一新穎之技術,製備單螺旋二十四面體奈米金屬材料。奈米多孔高分子模板以聚苯乙烯-聚左旋乳酸雙嵌段共聚物為系統,合成一具有雙螺旋二十四面體構型之共聚物,並利用鹼液水解聚左旋乳酸方式移除其成份,以製備雙螺旋二十四面體多孔高分子為模板並進行無電電鍍製程。接著,藉由毛細作用力將稀薄的鈀離子甲醇溶液填入到高分子模版的孔洞,再利用聯胺將鈀離子還原成鈀粒子,以做為金屬核種進行後續的無電電鍍,而稀疏的鈀粒子則有利於使鎳沉積還原成單螺旋二十四面體結構之奈米金屬材料。隨後將塊材浸入鎳的電鍍液中,進行鎳金屬還原步驟,在精準的掌控其成長條件後,並利用二氯甲烷移除高分子模版,即可得到單螺旋二十四面體奈米鎳材料。
    在此新穎製程中,更可進一步調整無電電鍍鎳沉積時間,製備尺度從數百奈米到微米等級的單螺旋二十面體金屬顆粒鎳材料,不僅如此,具有不同晶格常數與填充率之單螺旋二十四面體鎳材也可以利用不同分子量與組成之多孔聚苯乙烯模板製備而得。為了拓展奈米金屬材料多樣的選擇性,此一製程也應用到奈米金金屬材料,以相同概念製備一單螺旋二十四面體奈米金金屬材料。


    In this study, by taking advantage of the nucleation and growth control of templated electroless plating, a novel approach to fabricate metallic materials with single gyroid (SG) texture using polymer template with double gyroid (DG) texture is suggested. Nanoporous polystyrene (PS) with DG texture is prepared from the self-assembly of polystyrene-b-poly(L-lactide) (PS-PLLA) followed by hydrolysis of PLLA block, and then used as a template for templated electroless plating. With pore-filling of the dilute Pd solution to the PS template, homogeneously distributed Pd clusters within the PS template can be prepared by using hydrazine for the reduction of Pd ions, giving one single Pd nuclei for the growth of SG-structured Ni. Subsequently, the Ni deposition using the Pd nuclei as catalytic site can be carried out to form SG-structured Ni. Finally, nanoporous Ni with SG-structured texture can be obtained after removal of the PS template by washing with dichloromethane.
    With the novel approach, SG-structured Ni with controlled particle radius from hundreds nm to micrometer can be prepared by tuning the growth time for the Ni deposition. Furthermore, tunable lattice constant of the SG-structured Ni and the corresponding filling ratio of the nanoporous Ni can be created from the pre-synthesized PS template with different molecular weights and compositions. To effectively achieve versatile purposes for optical applications, SG-structured Au is synthesized via the novel method as described above. As a result, this approach develop a platform technology to fabricate SG-structured metallic nanomaterials with versatile characteristic for novel properties from the nucleation and growth of templated electroless plating using self-assembled DG-structured block copolymers (BCPs) as templates.

    Abstract I Contents III List of Figures V Chapter 1 Introduction 1 1.1 Templates for nanostructured materials 3 1.1.2 0D, 1D, and 2D nanostructures as templates 6 1.1.3 3D nanoporous materials 12 1.1.4 Silica-based and carbon-based mesoporous materials 16 1.2 Self-assembly of chiral block copolymers (BCPs*) 27 1.2.1 Nanoporous templates from degradable BCPs 31 1.3 Templated electroless plating 38 Chapter 2 Objectives 45 Chapter 3 Experimental Methods 47 3.1 Synthesis of PS-PLLA BCPs* 47 3.2 Sample preparation 48 3.2.1 Nanoporous PS templates 48 3.2.2 Templated electroless plating of SG-structured Ni 49 3.2.3 Templated electroless plating of SG-structured Au 51 3.3 Instrumentation 52 Chapter 4 Results and Discussion 56 4.1 SG-structured Ni from DG-structured PS templates via electroless plating 56 4.2 In-situ and ex-situ 1D SAXS measurements 62 4.3 Large-scale fabrication of SG-structured Ni 66 4.4 Tunable particle sizes, lattice constants and filling fractions of SG-structured Ni 68 4.5 SG-structured Au from DG-structured PS templates via electroless plating 74 Chapter 5 Conclusive Remarks and Future Work 77 Chapter 6 References 80

    http://www.liuli.com/en-us/index.aspx.
    Soler-Illia, G. J. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chem. Rev., 2002, 102, 4093.
    Lu, A. H.; Schu ̈th, F. Adv. Mater., 2006, 18, 1793.
    Sto ̈ber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci., 1968, 26, 62.
    Yokoi, T.; Sakamoto, Y.; Terasaki, O.; Kubota, Y.; Okubo, T.; Tatsumi, T. J. Am. Chem. Soc., 2006, 128, 13664.
    Goodwin, J. W.; Hearn, J.; Ho, C. C.; Ottewill, R. H. Colloid Polym. Sci., 1974, 252, 464.
    Goodwin, J. W.; Ottewill, R. H.; Pelton, R.; Vianello, G.; Yates, D. E. Br. Polym. J., 1978, 10, 173.
    Zou, D.; Ma, S.; Guan, R.; Park, M.; Sun, L.; Aklonis, J. J.; Salovey, R. J. Polym. Sci., Part A: Polym. Chem., 1992, 30, 137.
    Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Adv. Mater., 2000, 12, 693.
    Liu, Y.; Goebl, J.; Yin, Y. Chem. Soc. Rev., 2012, 42, 2610.
    Caruso, F.; Caruso, R. A.; Mo ̈hwald, H. Science, 1998, 282, 1111.
    Lou, X. W.; Archer, L. A.; Yang, Z. Adv. Mater., 2008, 20, 3987.
    Hu, J.; Chen, M.; Fanga, X.; Wu, L. Chem. Soc. Rev., 2011, 40, 5472.
    Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater., 2003, 15, 353.
    Huang, M. H.; Wu,Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Adv. Mater., 2001, 13, 113.
    Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science, 2001, 291, 1947.
    Huang, H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P.; Science, 2001, 292, 1897.
    Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H. J. Adv. Funct. Mater., 2002, 12, 323.
    Wang, Z. L. J. Phys.: Condens. Matter, 2004, 16, 829.
    Wang, Z. L.; Song, J. Science, 2006, 312, 242.
    Iijima, S. Nature, 1991, 354, 56.
    Iijima, S.; Ichihashi, T. Nature, 1993, 363, 603.
    Bethune, D. S.; Klang, C. H.; de Vries, M. S. Nature, 1993, 363, 605.
    Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science, 2002, 297, 787.
    Sgobba, V.; Guldi, D. M.; Chem. Soc. Rev., 2009, 38, 165.
    Ajayan, P. M.; Stephan, O.; Redlich, Ph.; Colliex, C. Nature, 1995, 375, 564.
    Satishkumar, B. C.; Govindaraj, A.; Vogl, E. M.; Basumallick, L.; Rao, C. N. R. J. Mater. Res., 1997, 12, 604.
    Fleisher, R. L.; Price, P. B.; Walker, R. M. Nuclear Tracks in Solids, University of California Press, Berkeley, CA, 1975.
    Furneaux, R. C.; Rigby, W. R.; Davidson, A. P.; Nature, 1989, 337, 147.
    Masuda, H.; Fukuda, K. Science, 1995, 268, 1466.
    Li, A. P.; Mu ̈ller, F.; Birner, A.; Nielsch, K.; Go ̈sele, U. J. Appl. Phys., 1998, 84, 6023.
    Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Go ̈sele, U. Nano Lett., 2002, 2, 677.
    Jani, A. M. M.; Losic, D.; Voelcker, N. H. Prog. Mater. Sci., 2013, 58, 636.
    Martin, C. R. Science, 1994, 266, 1961.
    Hulteen, J. C.; Martin, C. R. J. Mater. Chem., 1997, 7, 1075.
    Lee, J.; Kim, J.; Hyeon, T. Adv. Mater., 2006, 18, 2073.
    Liang, C.; Li, Z.; Dai, S. Angew. Chem., Int. Ed., 2008, 47, 3696.
    Lu, A. H.; Zhao, D.; Wan, Y. Nanocasting: A versatile strategy to create nanostructured porous materials, RSC Publishing, 2009.
    Ma, T. Y.; Liu, L.; Yuan, Z. Y. Chem. Soc. Rev., 2013, 42, 3977.
    Triantafillidis, C.; Elsaesser, M. S.; Hu ̈sing, N. Chem. Soc. Rev., 2013, 42, 3833.
    Ge’rardin, C.; Reboul, J.; Bonne, M.; Lebeaub, B. Chem. Soc. Rev., 2013, 42, 4217.
    Xia, Y.; Gates, B.; Li, Z. Y. Adv. Mater., 2001, 13, 409.
    Norris, D. J.; Arlinghaus, E. G.; Meng, L.; Heiny, R.; Scriven, L. E. Adv. Mater., 2004, 16, 1393.
    Dziomkina, N. V.; Vancso, G. J. Soft Matter, 2005, 1, 265.
    Zhang, J.; Sun, Z.; Yang, B. Curr. Opin. Colloid Interface Sci., 2009, 14, 103.
    Holland, B. T.; Blanford, C. F.; Stein, A. Science, 1998, 281, 538.
    Stein, A.; Wilson, B. E.; Rudisill, S. G. Chem. Soc. Rev., 2013, 42, 2763.
    Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1992, 359, 710.
    Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science, 1998, 279, 548.
    Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc., 1998, 120, 6024.
    Kruk, M.; Jaroniec, M.; Ryoo, R.; Kim, J. M. Microporous Mater., 1997, 12, 93.
    Yu, C. Z.; Yu, Y. H.; Zhao, D. Y. Chem. Commun., 2000, 575.
    Fan, J.; Yu, C. Z.; Gao, T.; Lei, J.; Tian, B. Z.; Wang, L. M.; Luo, Q.; Tu, B.; Zhou; W. Z.; Zhao, D. Y.; Angew. Chem., Int. Ed., 2003, 42, 3146.
    Liu, T.; Burger, C.; Chu, B. Prog. Polym. Sci., 2003, 28, 5.
    Mizoshita, N.; Tani, T.; Inagaki, S.; Chem. Soc. Rev., 2011, 40, 789.
    Van Der Voort, P.; Esquivel, D.; De Canck, E.; Goethals, F.; Van Driessche, I.; Romero-Salguero, F. J. Chem. Soc. Rev., 2013, 42, 3913.
    Deng, Y.; Wei, J.; Sun, Z.; Zhao, D. Chem. Soc. Rev., 2013, 42, 4054.
    Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Breton, A. L.; Pre’at, V. J. Controlled Release, 2012, 161, 505.
    Kamaly, N.; Xiao, Z.; Valencia, P. M.; Radovic-Morenob, A. F.; Farokhzad, O. C. Chem. Soc. Rev., 2012, 41, 2971.
    Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Chem. Soc. Rev., 2013, 42, 1147.
    Gentile, P.; Chiono, V.; Carmagnola I.; Hatton, P. V. Int. J. Mol. Sci., 2014, 15, 3640.
    Hans, L.; Lowman, A. M. Curr. Opin. Solid State Mater. Sci., 2002, 6, 319.
    Beck, J. S.; Vartuli,J. C.; Roth,W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins J. B.; Schlenker, J. L. J. Am. Chem. Soc., 1992, 114, 10834.
    Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B, 1999, 103, 7743.
    Meng, Y.; Gu, D.; Zhang, F;. Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Angew. Chem., Int. Ed., 2005, 44, 7053.
    Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    Mueller, A.; O'Brien, D. F. Chem. Rev. 2002, 102, 727.
    Wang, Y.; He, C. C.; Xing, W. H.; Li, F. B.; Tong, L.; Chen, Z. Q.; Liao, X. Z.; Steinhart, M. Adv. Mater. 2010, 22, 2068.
    Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    (a) Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519. (b) Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    Mansky, M.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N. Appl. Phys. Lett. 1996, 68, 2586.
    Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H.; Science 1997, 276, 1401.
    Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
    Du, P.; Li, M. Q.; Douki, K.; Li, X. F.; Garcia, C. R. W.; Jain, A.; Smilgies, D. M.; Fetters, L. J.; Gruner, S. M.; Wiesner, U.; Ober, C. K. Adv. Mater. 2004, 16, 953.
    Guo, F.; Andreasen, J. W.; Vigild, M. E.; Ndoni, S. Macromolecules 2007, 40, 3669.
    Ho, R. M.; Tseng, W. H.; Fan, H. W.; Chiang, Y. W.; Lin, C. C.; Ko, B, T,; Huang, B. H. Polymer 2005, 46, 9362.
    Vukovic, I.; Punzhin, S.; Vukovic, Z.; Onck, P.; De Hosson, J. T. M.; ten Brinke, G.; Loos, K. ACS Nano 2010, 4, 1913.
    du Sart, G. G.; Vukovic, I.; Vukovic, Z.; Polushkin, E.; Hiekkataipale, P.; Hiekkataipale, P.; Ruokolainen, J.; Loos, K.; ten Brinke, G. Macromol. Rapid Commun. 2011, 32, 366.
    Hsueh, H. Y.; Ho, R. M.; Huang, Y. C.; Lai, C. H.; Makida, T.; Hasegawa, H. Adv. Mater. 2011, 23, 3041.
    Hsueh, H. Y.; Chen, H. Y.; Hung, Y. C.; Ling, Y. C.; Gwo, S.; Ho, R. M. Adv. Mater. 2013, 25, 1780.
    Schlesinger, M. Modern Electroplating 2010, 18, 447.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE