研究生: |
魏仕珺 Wei, Shih-Chun |
---|---|
論文名稱: |
胞嘧啶微溶合團簇之超快激發態動態學研究 Utafast Excited-State Dynamics of Microsolvated Cytosine Clusters |
指導教授: |
鄭博元
Cheng, Po-Yuan |
口試委員: |
朱立岡
Chu, Li-Kang 李英裕 Lee, Yin-Yu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 胞嘧啶 、團簇 、超快動態學 、激發態 、溶劑 、氣態 |
外文關鍵詞: | cytosine, clusters, ultrafast dynamics, excited state, soivent, gas phase |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究protic solvent—水、甲醇與aprotic solvent—四氫呋喃與胞嘧啶形成之為溶合團簇之激發態衰減動態學。我們利用飛秒雷射激發–探測多光子游離技術結合飛行時間質譜儀進行實驗,以激發波長為266 nm;探測波長為800 nm之pump-probe REMPI(1+3')游離氣相胞嘧啶與溶劑分子所形成的團簇,觀察離子訊號大小隨激發–探測脈衝時間差變化。胞嘧啶在氣相中有三種較穩定的互變異構物—keto、enol、imino結構,在胞嘧啶單體的氣相動力學實驗中可以看見兩種生命期,分別為keto與enol構型的貢獻。但當胞嘧啶(Cy)在分子束在與protic solvent分子影響下,瞬時光譜中只會看見keto結構的貢獻。與前人的實驗相比,發現Cy-(H2O)n=2-6的生命期都約為0.2 ps,和在液態水相的胞嘧啶動力學實驗有相似的時間尺度。Cy-(MeOH)1與Cy-(H2O)1瞬時光譜形狀相似,生命期都約為0.5 ps;而Cy-(MeOH)2和Cy-(MeOH)3的激發態衰減生命期分別為0.48 ps和0.33 ps 較Cy-(H2O)n>2長,推測可能是因為甲醇分子的極性與氫鍵都較水分子弱所造成。當胞嘧啶與aprotic solvent分子作用時,瞬時光譜形狀與胞嘧啶單體的瞬時光譜較相似。Cy-(THF)1的瞬時光譜包含兩個生命期,一個為keto構型的貢獻,生命期為0.48 ps,;另一為enol結構的貢獻,生命期為10 ps。由上述的生命期可知,四氫呋喃對enol結構的胞嘧啶影響較大,生命期長了兩倍以上。
Gas-phase ultrafast excited-state dynamics of cytosine(Cy)-(H2O)n=4-6, Cy-(MeOH)n=1-3, and Cy-(THF)1 micro-solvated clusters were investigated in molecular beams using femtosecond pump-probe photoionization spectroscopy at about 266 nm excitation to identify the effect of protic and aprotic solvents to the cytosine intrinsic dynamics. The results suggest that the presence of protic solvent molecules allows an extensive relaxation of Cy-(H2O)n=1-6, and Cy-(MeOH)n=1-3 to the lowest-energy tautomer isomers, but aprotic solvent molecules do not exhibit such behaviors. Excited-state lifetimes of Cy-(H2O)n=1-6 and Cy-(MeOH)n=1-3 measured here are 0.2-0.5 ps. On the other hand, there are two components in the Cy-(THF)1 transient: one with an excited-state lifetime of 0.48 ps, and the other ~ 10 ps. The shorter component is ascribed to the keto form of Cy-THF, whereas the longer component is attributed to the enol form of Cy-THF. Comparisons of the Cy-(THF)1 and cytosine monomer transients suggest that THF has a stronger effect on enol-cytosine than keto-cytosine.
1. Middleton, C. T.; de La Harpe, K.; Su, C.; Law, Y. K.; Crespo-Hernandez, C. E.; Kohler, B., DNA Excited-State Dynamics: From Single Bases to the Double Helix. Annu. Rev. Phys. Chem. 2009, Vol. 60, pp 217-239.
2. Callis, P. R., Electronic States and Luminescence of Nucleic-Acid Systems. Annu. Rev. Phys. Chem. 1983, 34, 329-357.
3. Gustavsson, T.; Improta, R.; Markovitsi, D., DNA/RNA: Building Blocks of Life Under UV Irradiation. J. Phys. Chem. Lett. 2010, 1 (13), 2025-2030.
4. Kohler, B., Nonradiative Decay Mechanisms in DNA Model Systems. J. Phys. Chem. Lett. 2010, 1 (13), 2047-2053.
5. (a) Kang, H.; Lee, K. T.; Jung, B.; Ko, Y. J.; Kim, S. K., Intrinsic Lifetimes of the Excited State of DNA and RNA Bases. J. Am. Chem. Soc. 2002, 124 (44), 12958-12959; (b) Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A., Electronic Relaxation Dynamics in DNA and RNA Bases Studied by Time-Resolved Photoelectron Spectroscopy. Phys. Chem. Chem. Phys. 2004, 6 (10), 2796-2801; (c) Canuel, C.; Mons, M.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.; Elhanine, M., Excited States Dynamics of DNA and RNA Bases: Characterization of a Stepwise Deactivation Pathway in the Gas Phase. J. Chem. Phys. 2005, 122 (7).
6. (a) Tomic, K.; Tatchen, J.; Marian, C. M., Quantum Chemical Investigation of the Electronic Spectra of the Keto, Enol, and Keto-Imine Tautomers of Cytosine. J. Phys. Chem. A 2005, 109 (37), 8410-8418; (b) Kistler, K. A.; Matsika, S., Radiationless Decay Mechanism of Cytosine: An ab Initio Study with Comparisons to the Fluorescent Analogue 5-Methyl-2-Pyrimidinone. J. Phys. Chem. A 2007, 111 (14), 2650-2661.
7. (a) Diau, E. W. G.; De Feyter, S.; Zewail, A. H., Direct Observation of the Femtosecond Nonradiative Dynamics of Azulene in a Molecular Beam: The Anomalous Behavior in the Isolated Molecule. J. Chem. Phys. 1999, 110 (20), 9785-9788; (b) Wurzer, A. J.; Wilhelm, T.; Piel, J.; Riedle, E., Comprehensive Measurement of the S-1 Azulene Relaxation Dynamics and Observation of Vibrational Wavepacket Motion. Chem. Phys. Lett. 1999, 299 (3-4), 296-302.
8. Crespo-Hernandez, C. E.; Cohen, B.; Hare, P. M.; Kohler, B., Ultrafast Excited-State Dynamics in Nucleic Acids. Chem. Rev. 2004, 104 (4), 1977-2019.
9. Kosma, K.; Schroter, C.; Samoylova, E.; Hertel, I. V.; Schultz, T., Excited-State Dynamics of Cytosine Tautomers. J. Am. Chem. Soc. 2009, 131 (46), 16939-16943.
10. (a) Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; Vall-Ilosera, G.; Prince, K. C.; Trofimov, A. B.; Zaytseva, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J., Tautomerism in Cytosine and Uracil: An Experimental and Theoretical Core Level Spectroscopic Study. J. Phys. Chem. A 2009, 113 (19), 5736-5742; (b) Szczesniak, M.; Szczepaniak, K.; Kwiatkowski, J. S.; Kubulat, K.; Person, W. B., Matrix-Isolation Infrared Studies of Nucleic-Acid Constituent. 5. Experimental Matrix-Isolation and Theoretical ab Initio SCF Molecular-Orbital Studies of the Infrared Spectra of Cytosine Monomers. J. Am. Chem. Soc. 1988, 110 (25), 8319-8330; (c) Brown, R. D.; Godfrey, P. D.; McNaughton, D.; Pierlot, A. P., Tautomers of Cytosine by Microwave Spectroscopy. J. Am. Chem. Soc. 1989, 111 (6), 2308-2310; (d) Kostko, O.; Bravaya, K.; Krylov, A.; Ahmed, M., Ionization of Cytosine Monomer and Dimer Studied by UV Photoionization and Electronic Structure Calculations. Phys. Chem. Chem. Phys. 2010, 12 (12), 2860-2872; (e) Bazso, G.; Tarczay, G.; Fogarasi, G.; Szalay, P. G., Tautomers of Cytosine and Their Excited Electronic States: a Matrix Isolation Spectroscopic and Quantum Chemical Study. Phys. Chem. Chem. Phys. 2011, 13 (15), 6799-6807; (f) Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; de Simone, M.; Prince, K. C.; Trofimov, A. B.; Zaytseva, I. L.; Schirmer, J., Tautomerism in Cytosine and Uracil: A Theoretical and Experimental X-ray Absorption and Resonant Auger Study. J. Phys. Chem. A 2010, 114 (37), 10270-10276.
11. Ho, J. W.; Yen, H. C.; Chou, W. K.; Weng, C. N.; Cheng, L. H.; Shi, H. Q.; Lai, S. H.; Cheng, P. Y., Disentangling Intrinsic Ultrafast Excited-State Dynamics of Cytosine Tautomers. J. Phy. Chem. A 2011, 115 (30), 8406-8418.
12. (a) Nir, E.; Muller, M.; Grace, L. I.; de Vries, M. S., REMPI Spectroscopy of Cytosine. Chem. Phys. Lett. 2002, 355 (1-2), 59-64; (b) Nir, E.; Hunig, I.; Kleinermanns, K.; de Vries, M. S., The Nucleobase Cytosine and the Cytosine Dimer Investigated by Double Resonance Laser Spectroscopy and ab Initio Calculations. Phys. Chem. Chem. Phys. 2003, 5 (21), 4780-4785.
13. Ho, J. W.; Yen, H. C.; Shi, H. Q.; Cheng, L. H.; Weng, C. N.; Chou, W. K.; Chiu, C. C.; Cheng, P. Y., Microhydration Effects on the Ultrafast Photodynamics of Cytosine: Evidences for a Possible Hydration-Site Dependence. Angew. Chem. Int. Ed. 2015, 54 (49), 14772-14776.
14. Ma, C. S.; Cheng, C. C. W.; Chan, C. T. L.; Chan, R. C. T.; Kwok, W. M., Remarkable Effects of Solvent and Substitution on the Photo-Dynamics of Cytosine: a Femtosecond Broadband Time-Resolved Fluorescence and Transient Absorption Study. Phys. Chem. Chem. Phys. 2015, 17 (29), 19045-19057.
15. 周威銧, 胞嘧啶之氣相超快激發態動力學研究:激發態衰減時間與激發能量的依存性. 2008.
16. 蔡宗廷, 超快光游離誘發酚–氨錯合物陽離子內之質子轉移動態學研究. 2015.
17. 陳依微, 酚–氨陽離子錯合物中之超快質子轉移反應動態學研究. 2011.
18. 何智偉, 氣相飛秒化學反應動態學研究 1.二甲基亞碸之超快三體光解反 應動態學 2.偶氮苯陽離子在異構化途徑之同調振動. 2008.
19. Eldredge, B. A. A. P., General Chemistry: Principles, Patterns, and Applications, v. 1.0 (2 volume set)
20. Smalley, R. E.; Wharton, L.; Levy, D. H., Molecular Optical Spectroscopy with Supersonic Beams and Jets. Accounts Chem. Res. 1977, 10 (4), 139-145.
21. 顏弘建, 胞嘧啶及其水合團簇之氣相超快激發態動態學研究. 2007.
22. Fogarasi, G.; Szalay, P. G., Quantum Chemical MP2 Results on Some Hydrates of Cytosine: Binding Sites, Energies and the First Hydration Shell. Phys. Chem. Chem. Phys. 2015, 17 (44), 29880-29890.
23. Kim, S.; Schaefer, H. F., Microhydration of Cytosine and its Radical Anion: Cytosine Center Dot (H2O)(n) (n=1-5). J. Chem. Phys. 2007, 126 (6).
24. Thicoipe, S.; Carbonniere, P.; Pouchan, C., The Use of the GSAM Approach for the Structural Investigation of Low-Lying Isomers of Molecular Clusters from Density-Functional-Theory-Based Potential Energy Surfaces: The Structures of Microhydrated Nucleic Acid Bases. J. Phy. Chem. A 2013, 117 (32), 7236-7245.
25. Amirav, A.; Even, U., Isotope-Separation in Supersonic Molecular-Beams Using RF Spectroscopy. J. Appl. Phys. 1980, 51 (1), 1-6.
26. Nakayama, A.; Harabuchi, Y.; Yamazaki, S.; Taketsugu, T., Photophysics of Cytosine Tautomers: New Insights into the Nonradiative Decay Mechanisms from MS-CASPT2 Potential Energy Calculations and Excited-State Molecular Dynamics Simulations. Phys. Chem. Chem. Phys., 2013, 15 (29), 12322-12339.
27. Blancafort, L.; Migani, A., Water Effect on the Excited-State Decay Paths of Singlet Excited Cytosine. J. Photochem. Photobiol. A 2007, 190 (2-3), 283-289.
28. Das, T.; Ghosh, D., Ionization-Induced Tautomerization in Cytosine and Effect of Solvation. J. Phys. Chem. A 2014, 118 (28), 5323-5332.
29. Fogarasi, G., Water-Mediated Tautomerization of Cytosine to the Rare Imino Form: An ab Initio Dynamics Study. Chem. Phys. 2008, 349 (1-3), 204-209.
30. Furmanchuk, A.; Isayev, O.; Gorb, L.; Shishkin, O. V.; Hovorun, D. M.; Leszczynski, J., Novel View on the Mechanism of Water-Assisted Proton Transfer in the DNA Bases: Bulk Water Hydration. Phys. Chem. Chem. Phys. 2011, 13 (10), 4311-4317.
31. Clarkson, J. R.; Baquero, E.; Shubert, V. A.; Myshakin, E. M.; Jordan, K. D.; Zwier, T. S., Laser-Initiated Shuttling of a Water Molecule between H-Bonding Sites. Science 2005, 307 (5714), 1443-1446.
32. Szalay, P. G.; Watson, T.; Perera, A.; Lotrich, V.; Fogarasi, G.; Bartlett, R. J., Benchmark Studies on the Building Blocks of DNA. 2. Effect of Biological Environment on the Electronic Excitation Spectrum of Nucleobases. J. Phys. Chem. A 2012, 116 (35), 8851-8860.
33. Shterev, I. G.; Delchev, V. B., Theoretical Investigation of the Intermolecular H-Bonding and Proton Transfer in Cytosine Assisted by Water and Methanol. Mon. Chem. 2009, 140 (11), 1381-1394.