簡易檢索 / 詳目顯示

研究生: 蔣酉旺
Yeo-Wan Chiang
論文名稱: 掌性團聯共聚合物PS-PLLA之自組裝
Self-assembly of Chiral PS-PLLA Block Copolymers
指導教授: 何榮銘
Rong-Ming Ho
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 167
中文關鍵詞: 掌性團聯共聚合物自組裝聚乙烯聚乳酸螺旋
外文關鍵詞: Chiral, PS-PLLA, Block Copolymer, Self-assembly, Helical, Nanohelical
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用分子設計概念,仿效自然,由一掌性(chiral)分子與一非掌性分子(achiral)形成掌性團聯共聚合物(chiral block copolymer),成功利用自組裝(self-assembly)建構具特定掌性之奈米螺旋結構(nanohelical structure),此一奈米結構為一全新的自組裝形態,乃是團聯共聚合物之自組裝研究的重大發現,對傳統團聯共聚合物之理論計算將造成相當大震撼,預期開創一嶄新之研究領域方向。本計畫的結果顯示奈米螺旋結構呈現出一左旋形態與具左旋之組成單體有著相同之掌性,換言之,利用具分子掌性鏈段的團聯共聚物將可由自組裝的方式,而複製放大分子掌性形成奈米尺寸之螺旋微結構,並形成一奈米螺旋相。利用內部之結晶驅動力(Crystallization)或外部之剪切應力(Shearing force)調控掌性團聯共聚物之奈米螺旋結構之幾何形態,使其奈米螺旋結構經內部或外部趨動力轉變型態為結晶性或非晶態之圓柱新穎結構,並藉由熱退火的方式還原至初始的奈米螺旋結構,成為一新穎可調控式之奈米微結構。同時由於可進行螺旋微結構之排整,且由於所選擇之掌性鏈段為具可分解性,故將其奈米螺旋結構進行選擇性分解,輕易地製造出具有掌性之奈米螺旋孔道。此方式所建構之奈米螺旋微結構,將可提供奈米科技於材料應用開發上的一大突破。


    The self-assembly of synthetic supramolecules has been inspired by using the secondary interactions, and has already created a large number of nanoscale architectures. Among self-assembled architectures, helical morphology is probably the most fascinating morphologies in nature. Chirality of compounds has been referred to one of the main origins for the formation of helical textures. For the self-assembly of block copolymers (BCPs), one-, two-, or three-dimensional periodic nanostructures can be easily tailored by molecular engineering of synthetic BCPs. By taking the advantage of the BCP self-assembly and the specific configuration of chirality, chiral block copolymers (BCP*), poly(styrene)-block-poly(L-lactide) (PS-PLLA), containing both achiral PS and chiral PLLA blocks was designed for self-assembly. A unique transmission electron microscopy observation and small-angle X-ray scattering pattern for the self-assembled PS-PLLA nanostructure revealed the novel morphology of a hexagonally packed nanohelical phase. On the basis of the geometric features, the space group of the new nanohelical phase was identified as P622. The formation of the nanohelical phase from the BCP* self-assembly is thus referred to the contribution of chiral entities and might provide a new concept for design of the helical morphology in bulk.
    Because of large-size polymeric chains, the molecular chain dynamics is critical for the formation of stable and equilibrium morphology. Thermally induced transitions between the microphase-separeated morphologies are well known such as a HEX to BCC, a HPL to gyriod and a gyroid to HEX phase by varying the Flory interaction parameter x (a function of 1/T) at fixed block copolymer composition. In this study, to finely control formation of the helical morphology, metastability and order-disorder transition temperature for the nanohelical phase was examined by using time-resolved small-angle X-ray scattering and corresponding transmission electron microscopy. The phase transition of PS-PLLA after solution casting from a HPL to nanohelix was obtained by thermal annealing. With substantial time for annealing, the formed nanohelical phase might transform to a HEX phase; suggesting that the nanohelix is a metastable phase. Also, molecular weight effect on the formation of the nanohelical morphology was examined at a constant composition. The appearance of a gyriod instead of nanohelical phase for low-molecular-weight PS-PLLA indicates the formation of nanohelical phase is dependent upon segregation strength.
    To manipulate the three-dimensionally packed nanohelical morphology from BCP* in bulk, various stimuli were applied such as crystallization and shear stress. The self-assembled nanohelices can transform into crystallization- and shear-induced cylinders. The stress-induced cylinders (stretched nanohelices) were found thermally reversible upon annealing through undulation. As a result, the hexagonally packed PLLA nanohelices in PS matrix of chiral PS-PLLA block copolymers appear as spring-like behavior in response to the applied stimuli. This unique phase behavior thus creates a possible way for manipulating switchable nanohelical structures in practical applications.
    Since the crystallization-induced cylinder from nanohelical phase can be achieved by control of crystallization temperature, comprehension of the crystalline details within the nanohelical microdomain is critical. Various crystalline PS-PLLA nanostructures were obtained by controlling the crystallization temperatures of PLLA (Tc,PLLA) at which crystalline nanohelices (PLLA crystallization directed by helical confined microdomain) and crystalline cylinders (stretching of helical nanostructure dictated by crystallization) occur while Tc,PLLA<Tg,PS (the glass transition temperature of PS) and Tc,PLLA≧Tg,PS, respectively. As evidenced by simultaneous two-dimensional small-angle X-ray scattering and wide-angle X-ray diffraction as well as selected area electron diffraction, while Tc,PLLA<Tg,PS, owing to the directed crystallization by helical confinement, the preferred crystalline growth leads the crystallization following the helical track with growth direction parallel to the central axes of nanohelices through twisting mechanism. By contrast, while Tc,PLLA≧Tg,PS, the preferred growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility so as to dictate the stretching of nanohelices.
    It is known that aliphatic polyesters can be hydrolytically degraded owing to unstable character of the ester group. For application, the helical channels can be fabricated by elimination of PLLA through hydrolysis. By using field emission scanning electron microscopy and scanning probe microscopy, etched morphology of nanohelical structure can be identified. Stimulated by the idea of the nanoreactor, fabrication of nanohelical composites and inorganic nanohelices are successfully achieved by using the nanohelical channels as templates.

    List of Tables...………………………..…….………...……………..... IV Figure Captions…………….…….……..……….……...…….……….…V Chapter 1. Introduction……..…………………………….….…....…….1 1.1 Self-assembly...............................................................................…..3 1.2 Self-assembly of Block Copolymers………………..……....……...8 1.3 Helical Structures from Self-assembly…........................................11 1.3.1 Amphiphilic interactions…………………………….…..…..12 1.3.2 Solvophobic interactions……………………………….……15 1.3.3 Cholesteric liquid crystal formation………………………...18 1.3.4 Steric packing………………………………………………..21 1.3.5 Hydrogen bonds……………………………..………………25 1.3.6 Triblock copolymers……...……………………………..…28 1.4 Chirality…………………………………..…………………..…...30 1.4.1 Chiral effect on diblock copolymers in solution state….........31 1.4.2 Self-assembly with chiral entities............................................34 1.5 Crystallization of Semicrystalline Diblock Copolymers ……........35 1.5.1 Crystallization effect on microphase-separated morphology..35 1.5.2 Segregation strength effect......................................................38 1.5.3Hard and soft confinement/glass transition temperature effect.40 Chapter 2. Objectives……………….....………………………….…..46 Chapter 3. Materials and Experimental Methods.................................51 3.1 Synthesis of Chiral PS-PLLA Block Copolymers...........................51 3.1.1 Living free radical polymerization by TEMPO......................51 3.1.2 Improvement in thermal stability of PS-PLLA synthesized via ATRP........................................................................................58 3.1.2.1 Preparation of double-headed initiator................................58 3.1.2.2 Bulk ATRP of St initiated by DHI4-Cl/CuBr/HMTETA....59 3.1.2.3 Synthesis of diblock copolymer PS-PLLA..........................59 3.1.3 Bulk sample prepared by solution casting.................................61 3.2 Microstructural Characterization.......................................................62 3.2.1 Simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD)............................................62 3.2.2 Transmission electron microscopy (TEM)................................62 3.2.3 Differential scanning calorimetry (DSC)..................................63 3.2.4 Field-emission scanning electron microscopy (FESEM)...........64 3.2.5 Scanning probe microscopy (SPM)...........................................64 3.3 Fabrication of Nanoporous PS-PLLA................................................64 3.4 Stress-induced Orientation................................................................65 Chapter 4. Results and Discussion………................................................66 4.1 Self-assembly of Chiral PS-PLLA Block Copolymers......................66 4.1.1 Microphase-separated nanostructures of PS-PLLA...................67 4.1.2 Discovery of nanohelical phase.................................................69 4.1.3 Structural characterization of the nanohelical structures...........73 4.2 Metastability......................................................................................83 4.2.1 Order-disorder transition temperature (ODT)............................84 4.2.2 Formation of nanohelical phase...............................................86 4.2.3 Molecular weight effect...........................................................93 4.3 Spring-like Nanohelical Structures………………………………..97 4.3.1 Thermal behavior of PS-PLLA block copolymers…………...98 4.3.2 Crystallization effect/ internal stimuli on nanohelices……….99 4.3.3 Shearing effect/ external stimuli on nanohelices…………....103 4.3.4 Switchable nanohelical structures……………………….…..107 4.4 Crystallization in Helical Nanostructure……………………….…109 4.4.1 Uniplanar orientation of non-crystallized nanohelices....……110 4.4.2 Crystalline orientation analyzed by X-ray diffraction………114 4.4.3 Orientation function………….……………………………....124 4.4.4 Crystalline orientation analyzed by electron diffraction….…129 4.4.5 Confinement induced preferred crystalline growth……….…134 4.5 Nanohelical Channels for Applications……………………….…..143 4.6 Chiral Effect on Nanohelical Phase in BCP* PS-PLLA..................147 Chapter 5. Conclusion.....……………....…………..……………….…..151 Chapter 6. References...............................................................................156 Publications................................................................................................166

    1. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    2. Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
    3. Lehn, J.-M. Science 1985, 227, 849.
    4. Whitesides ,G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
    5. Lehn, J.-M. Supramolecular Chemistry. Concepts and Perspectives (VCH, Weinheim, 1995).
    6. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    7. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    8. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    9. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    10. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
    11. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    12. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    13. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
    14. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
    15. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    16. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
    17. Zheng, W.; Wang, Z.-G. Macromolecules 1995, 28, 7215.
    18. Abetz, V. Supramolecular polymers. New York: Marcel Dekker, 2000.
    19. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
    20. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1477.
    21. Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
    22. Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
    23. Discher, B. M; Won, Y,-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
    24. Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
    25. Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643.
    26. Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134.
    27. Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew. Chem. Int. Ed. 2000, 39, 228.
    28. Brunsveld, L.;Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525.
    29. Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann I. K.; Harris, F. W.; Chien, L.-C.; Yan, D.; He, T.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558.
    30. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    31. Goodby, J. W. et al. Cryst. Liq. Cryst. 1994, 243, 231.
    32. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524.
    33. Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675.
    34. Bai, F.; Chien, L.-C.; Li, C. Y.; Cheng, S. Z. D.; Percheck, R. Chem. Mater. 1999, 11, 1666.
    35. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785.
    36. Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
    37. Nelson, J. C. et al. Science 1997, 277, 1793.
    38. Engelkamp, H.; van Nostrum, C. F.; Picken, S. J.; Nolte, R. J. M. Chem. Commun. 1998, 979.
    39. Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
    40. Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
    41. Bassani, D. M.; Lehn, J.-M.; Baum, G.; Fenske, D.; Angew. Chem. Int. Ed. 1997, 36, 1845.
    42. Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem. Eur. J. 1999, 12, 3471.
    43. Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
    44. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105.
    45. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. Adv. Mater. 2002, 14, 198.
    46. Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 2001, 293, 676.
    47. Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
    48. Nowick, J. S. Acc. Chem. Res. 1999, 32, 287.
    49. Nolte, R. J. M. Chem. Soc. Rev. 1994, 23, 11.
    50. Huang, J.-T.; Sun, J.; Euler, W. B.; Rosen, W. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 439.
    51. Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn J.-M. Nature 2000, 407, 720.
    52. Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigt- Martin, I.; Leibler, L. Macromolecules 1995, 28, 3080.
    53. Krappe, U.; Stadler, R.; Voigt-Martin, I. Macromolecules 1995, 28, 4558.
    54. Brandrup, J.; Immergut, E. H.; Eds. Polymer Handbook, 3rd ed.; Wiley: New York, 1989.
    55. Auschra, C.; Standler, R.; Macromolecules 1993, 26, 2171.
    56. Standler, R.; Auschra, C.; Beakmann, J.; Krappe, U.; Voigt-Martin, I. G.; Leibler, L. Macromolecules 1995, 28, 3080.
    57. Helfand, E.; Wassermann, Z. R. Macromolecules 1980, 11, 960.
    58. Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. J. M.; Nolte, R. J. M. Science 1998, 280, 1427.
    59. Pasteur, L. C. R. Hebd. Sean. Acad. Sci. Paris 1848, 26, 535.
    60. Lotz, B.; Kovacs, A. J. ACS Polym. Prepr. 1969, 10, 820.
    61. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
    62. Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
    63. Yang, Y. -W.; Tanodekaew, S.; Mai, S. -M.; Booth, C.; Ryan, A. J.; Bras, W.; Viras, K. Macromolecules 1995, 28, 6029.
    64. Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phy. Rev. B. 1999, 60, 10022.
    65. Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
    66. Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
    67. Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
    68. Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
    69. Liu, L. -Z.; Yeh, F.; Chu, B. Macromolecules 1996, 29, 5336.
    70. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
    71. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
    72. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
    73. Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
    74. Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2053.
    75. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
    76. Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
    77. Zhu, L.; Cheng, S. Z-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
    78. Zhu, L.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Cheng, S. Z-D.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Liu, L.; Lotz, B. Macromolecules 2001, 34, 1244.
    79. Sun, L.; Zhu, L.; Ge, Q.; Quirk, R. P.; Xue, C.C.; Cheng, S. Z. D.; Hsiao, B. S.; Avila-Orta C. A.; Sics, I.; Cantino, M. E. Polymer 2004, 45, 2931.
    80. Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
    81. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur. Polym. J. 1992, 28, 1219.
    82. Kofinas, P.; Cohen, R. E. Macromolecules 1994, 27, 3002.
    83. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
    84. Mai, S. -M.; Fairclough, J. P. A.; Viras, K.; Gorry, P. A.; Hamley, I. W.; Ryan, A. J.; Booth, C. Macromolecules 1997, 30, 8392.
    85. Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
    86. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
    87. Chen, H.-L.; Wu, J. C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
    88. Loo, Y. -L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
    89. Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
    90. Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
    91. Loo, Y. -L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    92. Ho, R.-M.; Lin, F.-H.; Tsai, C.-C.; Lin, C.-C.; Ko, B.-T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
    93. Park, C.; De Rosa, C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 7931.
    94. Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Adv. Mater. 2002, 14, 31.
    95. Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Macromolecules 2002, 35, 3553.
    96. S. A. Khan, R. G. Larson, Rheol. Acta 1991, 30, 1.
    97. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    98. Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    99. Goldacker, T.; Abetz, V.; Stadler, R.; Erukhimovich, I.; Leibler, L. Nature 1999, 398, 137.
    100. Leibler, L. Macromolecules 1980, 13, 1602.
    101. Semenov, A. N. JETP 1985, 88, 1242.
    102. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    103. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    104. Thomas, E. L.; Lescanec, R. L. Philos. Trans. R. Soc. London A 1994, 348, 149.
    105. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
    106. Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    107. Wang, C.-Y.; Lodge, T. P. Macromolecules 2002, 35, 6997.
    108. Qi, S.; Wang, Z.-G. Phys. Rev. E 1997, 55, 1682.
    109. Qi, S.; Wang, Z.-G. Macromolecules 1997, 30, 4491.
    110. Wang, C.-Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    111. Fredrickson, G. H. Macromolecules 1991, 24, 3456.
    112. Matsen, M. W.; Schick, M. W. Phys. Rev. Lett. 1994, 72, 2660.
    113. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    114. Ryu, C. Y.; Ruokolainen, J.; Fredrickson, G. H.; Kramer, E. J.; Hahn, S. F. Macromolecules 2002, 35, 2157.
    115. Ruokolainen, J.; Fredrickson, G. H.; Kramer, E. J.; Ryu, C. Y.; Hahn, S. F.; Magonov, S. N. Macromolecules 2002, 35, 9391.
    116. Mahanthappa, M. K.; Lim, L. S.; Hillmyer, M. A.; Bates, F. S. Macromolecules 2007, 40, 1585.
    117. Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997, 277, 1225.
    118. Lehmann, W.; Skupin, H.; Tolksdorf, C.; Gebhard, E.; Zentel, R.; Kruger, P.; Losche, M.; Kremer, F. Nature 2001, 410, 447.
    119. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Macromolecules 1986, 19, 2197.
    120. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
    121. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    122. Tselikas, Y.; Hadjichristidis, N.; Lescanec, R. L.; Honeker, C. C.; Wohlgemuth, M.; Thomas, E. L. Macromolecules 1996, 29, 3390.
    123. Guo, S.; Rzayev, J.; Bailey, T. S.; Zalusky, A. S.; Olayo-Valles, R.; Hillmyer, M. A. Chem. Mater. 2006, 18, 1719.
    124. Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407.
    125. Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557.
    126. Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Ten Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634.
    127. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909.
    128. Aleman, C.; Lotz, B.; Puiggali, J. Macromolecules 2001, 34, 4795.
    129. Chiang, Y.-W.; Ho, R.-M.; Ko, B.-T.; Lin, C.-C. Angew. Chem. Int. Ed. 2005, 44, 7969.
    130. Wang, Z. G.; Xia, Z. Y.; Yu, Z. Q.; Chen, E. Q.; Sue, H. J.; Han, C. C.; Hsiao, B. S. Macromolecules 2006, 39, 2930.
    131. Tsuji, H.; Ikada, Y. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 59.
    132. Tseng, W.-H. PhD. Thesis at Tsing Hua University, Taiwan 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE