研究生: |
胡鈞凱 Hu, Jyun-Kai |
---|---|
論文名稱: |
針對高碼率之類循環低密度奇偶校驗碼的低複雜度階層式解碼器 A Reduced-Complexity Layered Decoder Architecture for High Rate QC-LDPC Codes |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
王忠炫
Wang, Chun-Hsuan 唐宏驊 Tang, Hung-Hua |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 低密度奇偶校驗碼 、記憶庫衝突 、三著色問題 、排程 |
外文關鍵詞: | LDPC code, bank conflict, 3-coloring, scheduling |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上低密度奇偶校驗碼(low-density parity-check code, LDPC code)的階層式解碼器 (layered decoder) 通常在校驗節點 (check node) 會採取循序 (serial) 而非平行的計算以降低面積成本,但這樣一來,我們會需要一個額外的記憶體空間去暫存變數節點 (variable node) 傳至校驗節點的訊息,而在高碼率的規格下,這樣的一塊記憶體空間會佔據不小的面積。針對以上的問題,本文提出了一種重新安排處理流程的階層式解碼器架構,且不需儲存對數似然比 (log-likelihood ratio),取而代之的是儲存變數節點傳至校驗節點的訊息,同時也不需要額外的儲存空間去為了在校驗節點計算整個階層之後立刻更新相鄰變數節點的對數似然比。除此之外,本文也討論了有關排程 (scheduling) 與資源綁定 (resource binding) 的三種方法來解決存在於文中架構的記憶庫衝突 (bank conflict)。對於碼率0.9碼長4 kB的類循環 (quasi cyclic) 低密度奇偶校驗碼,在不造成錯誤率增加的前提之下,約可以減少百分之二十二的解碼器面積。最後以90奈米互補式金屬氧化物半導體 (complementary metal-oxide-semiconductor, CMOS) 製程實作出面積為6.46平方毫米的類循環低密度奇偶校驗碼階層式解碼器,並可達到每秒5.87 Gb的吞吐量 (throughput)。
The conventional layered decoder for LDPC codes usually adopt serial check node units to reduce the area cost, but this way requires an additional variable-to-check (V2C) FIFO and the area of this FIFO may be very large when high rate codes are used. This thesis presents a decoder architecture by rearranging the processing order, and the proposed layered decoder stores V2C extrinsic information instead of log-likelihood ratio (LLR) values. No additional FIFO is required for the updating after the serial operation. In addition, three methods about scheduling and resource binding are discussed to resolve the bank conflict of the proposed decoder architecture. For the LDPC code with the code length 4 kB and the code rate 0.9, approximate 22% of the total area is reduced without performance loss. After implemented in 90-nm CMOS process, the proposed LDPC decoder can achieve a throughput of 5.87 Gb/s with an area of 6.46 mm².
[1] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett., vol. 32, no. 18, pp. 1645–1646, 1996.
[2] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, 1962.
[3] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 54, no. 1, pp. 71–81, 2006.
[4] “IEEE Standard for Information technology– Local and metropolitan area networks– Specific requirements– Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput.” IEEE-SA, 2009.
[5] “IEEE Standard for Air Interface for Broadband Wireless Access Systems.” IEEE-SA, 2012.
[6] “Unified high-speed wireline-based home networking transceivers - System architecture and physical layer specification.” ITU-T, 2011.
[7] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, 1988.
[8] M. P. C. Fossorier, M. Mihaljević, and H. Imai, “Reduced complexity iterative decoding of low-density parity check codes based on belief propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680, 1999.
[9] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures for low-density parity-check codes,” in IEEE Global Telecommunications Conference, 2002, vol. 2, pp. 1383–1388.
[10] B. Xiang, D. Bao, S. Huang, and X. Zeng, “An 847–955 Mb/s 342–397 mW Dual-Path Fully-Overlapped QC-LDPC Decoder for WiMAX System in 0.13 μm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1416–1432, 2011.
[11] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519, 2001.
[12] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in Cryptography and Coding, C. Boyd, Ed. Springer Berlin Heidelberg, 1995, pp. 100–111.
[13] J. Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity check codes,” IEEE Trans. Commun., vol. 50, no. 3, pp. 406–414, 2002.
[14] C.-H. Liu, C.-C. Lin, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-S. Hsu, and S.-J. Jou, “Design of a Multimode QC-LDPC Decoder Based on Shift-Routing Network,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 56, no. 9, pp. 734–738, 2009.
[15] D. E. Knuth, The Art of Computer Programming: Volume 3/Sorting and Searching. Reading MA, Addison-Wesley, 722p, 1973.
[16] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and graph coloring algorithms,” J ACM, vol. 30, no. 3, pp. 417–427, Jul. 1983.
[17] H. Zhong, W. Xu, N. Xie, and T. Zhang, “Area-Efficient Min-Sum Decoder Design for High-Rate Quasi-Cyclic Low-Density Parity-Check Codes in Magnetic Recording,” IEEE Trans. Magn., vol. 43, no. 12, pp. 4117–4122, 2007.
[18] K.-C. Ho, P.-C. Fang, H.-P. Li, C.-Y. M. Wang, and H.-C. Chang, “A 45nm 6b/cell charge-trapping flash memory using LDPC-based ECC and drift-immune soft-sensing engine,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 222–223.
[19] J. Kim and W. Sung, “Rate-0.96 LDPC Decoding VLSI for Soft-Decision Error Correction of NAND Flash Memory,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. Early Access Online, 2013.
[20] S.-M. Kim, C.-S. Park, and S.-Y. Hwang, “A novel partially parallel architecture for high-throughput LDPC Decoder for DVB-S2,” IEEE Trans. Consum. Electron., vol. 56, no. 2, pp. 820–825, 2010.