簡易檢索 / 詳目顯示

研究生: 黃慶祥
論文名稱: 下泌尿道系統流場量測與模擬分析之研究
Experimental and computational fluid dynamics study of lower urinary tract system
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 60
中文關鍵詞: 下泌尿道系統出口阻塞非侵入式尿道壓力降計算流體力學尿流動力學
外文關鍵詞: lower urinary tract system, bladder outlet obstructed, noninvasive, urinary, pressure drop, cfd, urodynamic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膀胱出口阻塞症狀(BOO)是一種常見的老年疾病,而現今在臨床上的診斷依據卻又都是用非侵入式的檢測方式,這不僅影響病人的身心健康,還會有感染傳染病的危險。此計畫希望能夠透過實驗方式來驗證數值方法,發展一套非侵入式的診斷方法來協助醫師診斷膀胱出口阻塞症狀。

    研究方法方面,著重在找出尿道流場中影響壓力損失的最主要因素。本研究透過醫學影像分析,利用影像資料配合影像處理技術,搭配計算流體力學驗證出有效相當於真實人體下泌尿道外形的精簡對稱的模型,並使用CNC製造方式產生。並配合實驗驗證與2維計算流體力學模擬,呈現其流場內的壓力與速度分布情形。

    此外,透過本實驗方式,也可以驗證現階段計算流體力學在模擬人體排尿狀況時的準確性。也由於模型的簡化與對稱性,可透過較精密的網格與2維計算方式得到較佳的模擬結果。目的協助醫師判斷病因,並同時可減輕病人在診斷時不論心理或生理上的不適。


    In order to provide reliable measured data to validate the CFD predictions, a lower urinary tract system model is fabricated based on the reconstruction of the CT images of patients with BOO. The measured data will help to identify the underlying cause of this difference between the CFD results and the clinical data. Due to the fabricational complexity of the real 3-D urethral model, the adopted model is a straight axi-symmetrical model, but having the same cross-sectional area of the real urethral. To investigate the effects of this simplification, computational study will also be directed to investigate the influences of the 2-D (axi-symmetric) and 3-D geometry on the pressure distributions.

    Since the present study is to clarify through experimental measurements the cause of the mismatch between the CFD prediction and the clinical data, with the latter being 10 times larger than the former one. Based on the present measurements, this difference might not be caused by the minor loss due to the change of geometry. Instead, other mechanism, which is not accounted for in the present CFD simulation, could be presented. The likely cause is that an opening pressure should be present to open the elastic regions of the prostate and sphincter. This region is in general closed to prevent the urine from leaking from bladder. For a BOO patient, the opening pressure required is even higher.

    Title Acknowledgement Content………………………………………………………………i Nomenclature……………………………………………………… iii List of figures……………………………………………………v Abstract…………………………………………………………… vi Chapter 1 Introduction 1.1 Introduction……………………………………………… 1 1.2 Description of the lower urinary tract system…… 2 1.3 Methods of clinical examination and diagnosis … 5 1.4 Disadvantages of current diagnostic method ……… 6 1.5 Paper survey ……………………………………………… 6 1.6 Objective ………………………………………………… 11 Figures 13 Chapter 2 Mathematical Formulations 2.1 Governing equation ……………………………………… 19 2.2 Turbulence model ………………………………………… 20 2.3 Curvilinear coordinate system …………………………21 Chapter 3 Numerical Solution Procedure 3.1 Discretization …………………………………………… 25 3.2 Hybrid scheme ………………………………………………27 3.3 Linear equation system ………………………………… 28 3.4 SIMPLE algorithm ………………………………………… 29 3.5 Boundary conditions ………………………………………32 Chapter 4 Experimental Method 4.1 Experimental objective ………………………………… 32 4.2 Experimental model ……………………………………… 32 4.3 Experimental apparatus ………………………………… 34 4.4 Experimental procedure ………………………………… 35 4.5 Operating ranges of experiment…………………………36 Figures 37 Chapter 5 Result and Discussion 5.1 Grid independenttest………………………………………41 5.2 Comparisons of CFD predictions & measurement………42 Figures 47 Chapter 6 Conclusion and Future work 6.1 Conclusion ………………………………………………… 52 6.2 Future work …………………………………………………53 Appendix A Diagnostic method and Abrams-Griffiths nomogram……… 55 Reference ……………………………………………………… 57

    [1] Scott J.E. S., Clayton C.B., Dee P.M. and Simpson W.,
    “A study of the female urethra. Experiments with
    models”,Journal of Urology, vol.96, pp.763-769, 1966.
    [2] Spangerg A., Terio H., Anders E. and Ask P.,
    Quantification of urethral function based on Griffiths’
    model of flow through elastic tubes”, Neurourol
    Urodynamics, vol.8, pp.29-52, 1989.
    [3] Lim CS, Abrams P., “The Abrams-Griffiths Nomogram”.
    World Journal of Urology, vol.13, pp.34-39, 1995.
    [4] Blaivas J.G., “Multichannel urodynamics studies in
    men with benign prostatic hyperplasia”, Indications
    and interpretation. Urol Clin North Am 17, pp.543-552,
    1990.
    [5] Abrams P, Bruskewitz R, De la Rosette J, et al, “The
    diagnosis of bladder outlet obstruction”, Urodynamics.
    In Cockett ATK, Khoury S, Aso Y, et al(eds):
    Proceedings, the 3rd International Consultation on BPH.
    Geneva, World Health Organization, pp.299-367, 1995.
    [6] McGuire E.J., “Urodynamic studies in prostatic
    obstruction”, In Fitzpatrick J.M., Krane R.J. (eds):
    The Prostate. New York, Churchill Livingstone, pp.103-
    109, 1989.
    [7] Bruskewitz R, Jensen KM-E, Ivversen P, et al, ”The
    relevance of minimum urethral resistance in
    prostation”, Journal of Urology vol.129, pp.769-771,
    1983.
    [8] Schäfer W., “Detrusor as the energy source of
    micturition”, In Hinman F Jr, Boyarsky S (eds): Benign
    Prostatic Hypertrophy. New York, Springer Verlag,
    pp.450-469, 1983.
    [9] Schäfer W., “The contribution of the bladder outletto
    the relation between pressure and flow rate during
    micturition”, In Hinman F Jr, Boyarsky S (eds): Benign
    Prostatic Hypertrophy. New York, Springer Verlag,pp.470-
    496, 1983.
    [10]Spangerg A., Terio H., Anders E. and Ask P.,”
    Quantification of urethral function based on
    Griffiths’ model of flow through elastic tubes”,
    Neurourol Urodynamics, vol.8, pp.29-52, 1989.
    [11]Spangerg, A., Terio H., Engberg A., and Ask P., ”
    Estimation of elastic properties in the urethral flow
    controlling zone by singnal analysis of urodynamic
    pressure/flow data”, Med. and Biol.Eng and Computing,
    vol.27 ,pp.314-321,1989.
    [12]James S. Walter, John S. Wheeler, Jr., Paul
    Zaszczurynski, and Michael Plishka, ”Urodynamic
    measure of urethral cross-sectional area: application
    for obstructive uropathy”, Neurourology and
    Urodynamics, vol.13, pp.571-586, 1994.
    [13]Hideo Ozawa, Hiromi Kumon, Teruhiko Yokoyama, Toyohiko
    Watanabe and Michael B. Chancellor, “Develop of
    noninvasive velocity flow video urodynamics using
    Doppler sonography. PARTII: Clinical application in
    bladder outlet obstruction”, Journal of Urology,
    vol.160, p1792-1796, 1998.
    [14]Ozawa, Hideo; Chancellor, Michael B.; Ding, Yew Yoong;
    Nasu, Yasutomo; Yokoyama, Teruhiko; Kumon, Hiromi,
    “Noninvasive urodynamic evaluation of bladder outlet
    obstruction using Doppler ultrasonography”, Urology,
    Vol.56, issue 3, pp.408-412, 2000.
    [15]Siroky M.B., Olsson C.A., Krane R.J., “The flow rate
    nomogram: I. Development”, Journal of Urology,
    vol.122, pp.665-668, 1979.
    [16]Haylen B.T., Parys B.T., Anyaebunam W.I., et al,
    “Urine flow rates in male and female urodynamics
    patient compared with the Liverpool nomograms”, Br
    Journal of Urology, vol.65, pp.483-487, 1990.
    [17]Harish S. Lecamwasam, Maryrose P. Subbarao V. Yalla,
    and Ernest G. Cravalho, “The flow regimes and the
    pressure-flow relationship in the canine urethra”,
    Neurourology and Urodynamics, vol.18, pp.521-541, 1999.
    [18]Comiter, Craig V.; Sullivan, Maryrose P.; Schacterle,
    Richard S.; Yalla, Subbarao V., “Prediction of
    prostatic obstruction with a combination of isometric
    detrusor contraction pressure and maximum urinary flow
    rate.”, Urology, vol.48, issue: 5, pp.723-730, 1996.
    [19]C.A. Taylor, “Computational fluid dynamics in
    cardiovascular surgery planning”, the 9th national
    conference on computational fluid dynamics, pp.1-4,
    2002.
    [20]H. Liu, H. Iwase, T. Hayasaka, Y. He, N. Matsunaga, T.
    Shigetani and R. Himeno, “Image-based simulation of
    cardiovascular blood flow and its clinical
    application”, the 9th national conference on
    computational fluid dynamics, pp.15-22, 2002.
    [21]T. Yamaguchi, Tomoaki Hayasaka, Daisuke Mori, Hiroyuki
    Hayashi, Kouichiro Yano, Fumio Mizuno and Makoto
    Harazawa, “Towards computational biomechanics
    cardiovascular medical practice”, Proceedings of the
    Second International Conference on Computational Fluid
    Dynamics, pp.46-61, 2002.
    [22]楊承修, “根據醫學影像處理計算下泌尿道系統流場之研究”,
    國立清華大學碩士論文, 2003.
    [23]K. C. Tan, K. L. Lau, Y. T. Ching, C. H. Yang and C. A.
    Lin, “Rectangular meshes construction and
    computational fluid dynamic analysis of the human
    urethra using computed tomographic images”, submitting
    to the 2nd Computer Graphics Workshop, 2003.
    [24]李豐銘, “下泌尿道系統非侵入式量測方法之研究”, 國立清華
    大學碩士論文, 2002.
    [25]Launder, B. E. and Spalding, D. B., “The Numerical
    Computation of Turbulent Flow”, Computer Method in
    Applied Mechanics and Engineering, Vol.3, pp.269-289,
    1974.
    [26]M. Peric, “A finite-volume method for the prediction
    of three-dimensional fluid flow in complex ducts”,
    Ph.D thesis, University of London, 1985.
    [27]Indeed - Visual Concepts, “Amira”,
    http://www.indeed3d.com/index.html.
    [28]黃仁政, “計算流體力學運用於泌尿系統臨床檢查可行性之研
    究”, 國立清華大學碩士論文, 1999.
    [29]楊子慶, “泌尿系統內部壓力分佈研究”, 國立清華大學碩士論
    文,2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE