研究生: |
莊敬平 Chuang Ching Ping |
---|---|
論文名稱: |
隨機條件交易時間距離模型之股票市場實證分析 (Condtional Duration Models : An Empirical Study in U.S. Stock Market) |
指導教授: | 黃裕烈 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 經濟學系 Department of Economics |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 交易時間距離 、卡曼濾波 、自我迴歸條件下的交易時間距離模型 、隨機條件下的交易時間距離模型 |
外文關鍵詞: | Duration, ACD model, SCD model, Kalman Filter, State Space model, QMLE |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要是應用stochastic conditional duration (SCD) 模型做為實證分析的依據。
首先,我們利用 autoregressive conditional duration (ACD) 模型,為此篇論文的原始模型,
然後,再運用 SCD 模型的技巧來改善 ACD 模型。
最後,我們從 NYSE 中選取出兩檔股票,分別把資料套用至 ACD 與 SCD 模型中,並比較那一個模型較為適用。
ACD 模型主要是以過去的交易時間距離來預期當期的交易時間距離,並透過交易時間距離變化,來判斷市場上訊息的流入時間點。
而 SCD 模型則是在 ACD 模型中的潛在方程式 (latent equation) 中加入隨機的因子,
來改善 ACD 模型的不足的地方。
然而這個所加入的隨機因子可以用來捕捉隨機的突發事件,
這樣的設定能讓我們對交易時間距離的預期更加準確,
進而能精準地判斷何時會有訊息流入。
如果我們只運用 ACD 模型來預估交易時間距離,而不把當期的突發事件考量進來,
是有可能會讓我們對交易時間距離的預期變得較不準確。
我們透過上述論點,把資料分別帶入 SCD 和 ACD 模型之中來做比較,
經由實證分析可知 ACD 模型中的 log-ACD 模型仍就明顯地優於 SCD 模型的配適交易時間距離的能力,
log-ACD 模型將較能準確地捕捉訊息流入的時間點。
Bauwens, L. and P. Giot (2000). “The logarithmic ACD model: An application to the bid-ask quote process of three NYSE stocks,”Annales d’Economie et de Statistique, 60, 117-150.
Bauwens, L. and P. Giot (2003). “Asymmetric ACD models:introducing price information in ACD models with a two state transition model,”Empirical Economics, 28 (4).
Bauwens, L. and D. Veredas, (2004). “The stochastic conditional duration model:a latent variable model for the analysis of financial durations,” Journal of Econometrics, 119, 381-412.
Bollerslev T. (1986). “Generalized Autoregressive Conditional Heteroskedasticity,”Journal of Econometrics, 31, 307-327.
Chiang M. H. (2005). “ The Autoregressive condition MulitnomialModel under Price and Duration Momenta,” Instuitute of International Business, National Cheng Kung University, Working Paper.
Clark, P. K. (1973). “A subordinated stochastic process model with finite variance for speculative pricess,” Econometrica, 41, 135-155.
Easley, D., and M. O’Hara (1992). “Time and the Process of Security Price Adiustment,” The Journal of Finance, 47, 577-605.
Engle, R. F. (1982). “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation,” Econometrica,50, 987-1008.
Engle, R. F. and J. R. Russell (1995). “Autoregressive Conditional Duration: A new model for irregularly Spaced Time Series Data,”University of California, San Diego unpublished manuscript.
Engle, R. F. and J. R. Russell (1997). “Forecasting the Frequency of Changes in Quoted Foreign Exchange Prices with the Autoregressive condition Duration Model,” Journal of Empirical Finance, 4,187-212.
Engle, R. F. and J. R. Russell (1998). “Autoregressive condition Duration:A New Model for Irregularly Spaced transaction Data,”Econometrica, 66, 1127-1162.
Engle, R. F. (2000). “The Econometrics of Ultra-High Frequency Data,” Econometrica, 68, 1-22.
Fernandes, M. and J. Grammig (2001). “A family of autoregressive condtional duration models,” Discussion paper 2001/31, CORE.
Ghysels, E. and J. Jasiak (1997). “GARCH for irregularly space financial data: the ACD-GARCH model,” Studies in Nonlinear Dynamics and Econometrics , 2, 133-149.
Ghysels, E., C. Gourieroux, and J. Jasiak (2004). “Stochastic volatility duration models,” Journal of Econometrics , 119, 413-433.
Gourieroux, C., J. Jasiak, and G. Le Fol (1999), “Intra-day Market activity,” Journal of Financial Markets, 2, 193-226.
Greene, W. H. (2003). Econometric Analysis, 5th ed., Englewood Cliffs: Prentice Hall.
Kalman, R. E. (1960). “A new approach to linear filtering and prediction problems”, Journal of Basic Engineering, Transaction ASMA Series D 82: 35-45.
Kim, C. J. and C. R. Nelson (1999). State-space models with regime switching:classical and Gibbs-sampling approaches with applications, Massachusetts Institute of Technology : MIT Press.
Ruiz, E. (1994). “Quasi-maximum likelihood estimation of stochastic volatility models,” Journal of Econometrics, 63, 289-306.
Tauchen, G. E. and M. Pitts (1983). “The price variability-volumerelationship on speculative markets,” Econometrica, 51, 485-506.
Taylor S. J. (1994). “Modelling Stochastic Volatility,” Mathematical Finance, 4, 183-204.
Tsay, R. S. (2002). Analysis of Financial Time Series, New York:John Willey.
Wood, R. A., T. H. McInish, and J. K. Ord (1985). “An investigation
of transactions data for NYSE stocks,” Journal of Finance, 40,723-741.
Zhang M. Y., J. R. Russell, and R. S. Tsay (2001). “A nonlinear autoregressive conditional duration model with applications to financial transaction data,”Journal of Econometrics, 104, 179-207.