簡易檢索 / 詳目顯示

研究生: 楊承旺
Yang, Chen-Wang.
論文名稱: 探討自行車龍頭豎管調整對於人體肌肉活化 及關節角度的影響
Exploring the Effect of Bicycle Faucet Adjustment on Human Muscle Activation and Joint Angle
指導教授: 邱文信
Chiu, Wen-Hsin
口試委員: 劉強
Liu, Chiang
許維君
Hsu, Wei-Chun
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 體育學系體育碩士在職專班
In-service Master Program of Physical Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 軀幹前傾豎管長度豎管角度
外文關鍵詞: Trunk lean forward, Standpipe length, Standpipe angle
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緒論:自行車騎乘都會有前骨盆傾斜與軀幹傾斜的情形,除了車體大小、把手型式以及坐墊位置之外,還有「豎管」距離長短及角度也會影響身體前傾角度,需要以科學證據釐清,豎管傾斜角度及其距離使關節角度改變對身體的影響程度。方法:自行車龍頭豎管設定3種角度和3種豎管長度,利用無線肌電圖測量儀和三維動作捕捉系統Vicon Motion System收集踩踏過程(30秒,50rpm,80W)動作與肌電訊號,再依踩踏週期進行肌電分析與關節角度。收取資料以二因子變異數分析比較上肢四條肌肉活化,和踩踏週期中肘、肩以及髖關節角度動作參數之差異。當統計上達顯著水準時,再以LSD法進行事後比較,本研究之顯著水準為α= .05。結果:豎管長度比例之肌肉活化方面,只有伸腕肌達顯著;豎管角度之肌肉活化方面,伸腕肌和闊背肌達顯著。豎管長度比例之關節角度方面,肩關節和髖關節角度達到顯著;豎管角度之關節角度,髖關節角度達到顯著。豎管長度越長或角度越低時,前臂肌肉活化越大,而前三角肌活化越低;此時關節角度上,肩關節角度越大,髖關節角度越小。結論:不同比例豎管長度與角度調整於上肢肌肉差異主要在伸腕肌,肌肉活上兩因子皆達顯著差異,尤其在11%、-5∘時都顯著較大。上身關節角度達顯著者為肩關節與髖關節,尤其髖關節兩因子皆達顯著。髖關節角度越小、前臂壓力越重,在11%比例時髖關節角度最小—47.68∘、肩關節角度103.96∘,值得參考,因此時伸腕肌有顯著肌肉活化。


    Introduction:Bicycle riding will have a front pelvic tilt and a torso tilt. In addition to the size of the car, the type of the handle and the position of the seat cushion, the length and angle of the "vertical pipe" will also affect the forward tilt angle of the body. It needs to be clarified by scientific evidence. The angle of inclination of the standpipe and its distance affect the degree of influence of the joint angle on the body.Methods:The bicycle faucet is set with 3 angles and 3 vertical tube lengths. The wireless electromyography measuring instrument and the 3D motion capture system Vicon Motion System are used to collect the pedaling process (30 seconds, 50 rpm, 80 W) and the myoelectric signal, and then step on the pedal. The myoelectric analysis and joint angle were performed periodically. The data were analyzed by two-factor variance analysis to compare the activation of the four muscles of the upper limbs and the differences in the angular movement parameters of the elbow, shoulder and hip during the pedaling cycle. When the statistical level is significant, the post-mortem comparison is performed by the LSD method. The significant level of this study is α = .05.Results:In terms of muscle activation in the proportion of the length of the vertical tube, only the wrist muscles were prominent; the muscle activation of the vertical tube angle was significant in the extension of the wrist muscle and the broad back muscle. In terms of the joint angle of the length of the vertical tube, the angle of the shoulder joint and the hip joint is significant; the joint angle of the vertical tube angle and the angle of the hip joint are remarkable. The longer the length of the standpipe or the lower the angle, the greater the activation of the forearm muscle and the lower the activation of the anterior deltoid muscle; at this point, the greater the angle of the shoulder joint, the smaller the hip joint angle.Conclusions:The length and angle of the different lengths of the vertical tube were adjusted in the upper limb muscles mainly in the wrist muscles, and the muscle activity was significantly different, especially at 11% and -5 ∘. The upper joint joint angle is significant for both the shoulder joint and the hip joint, especially the hip joint. The smaller the hip joint angle and the heavier the forearm pressure, the minimum hip joint angle at 11% ratio is 47.68∘, and the shoulder joint angle is 103.96∘, which is worthy of reference. Therefore, there is significant muscle activation in the wrist muscle.

    中文摘要…………………………………………………………………………I 英文摘要…………………………………………………………………………II 目次………………………………………………………………………………IV 表次………………………………………………………………………………VI 圖次………………………………………………………………………………VII 第壹章 緒論……………………………………………………………………6 第一節 研究背景………………………………………………………………6 第二節 研究目的………………………………………………………………9 第三節 研究範圍與限制………………………………………………………10 第四節 名詞操作性定義………………………………………………………10 第貳章 文獻探討………………………………………………………………12 第一節 自行車運動傷害相關文獻……………………………………………12 第二節 車體結構對人體影響…………………………………………………14 第三節 前傾姿勢對人體的影…………………………………………………15 第四節 本章結論………………………………………………………………17 第參章 研究方法………………………………………………………………17 第一節 研究對象………………………………………………………………17 第二節 實驗時間與地點………………………………………………………18 第三節 研究器材與設備………………………………………………………18 第四節 實驗流程………………………………………………………………20 第五節 資料收集、分析與處理………………………………………………22 第六節 統計方法………………………………………………………………23 第肆章 結果與討論……………………………………………………………24 第伍章 結論與建議……………………………………………………………37 參考文獻…………………………………………………………………41

    王令儀(2008)。淺談運動生物力學研究中的Hill肌肉模型。中華體育,22,80-88。
    交通部(2013)。2009年下半年12歲以上民眾騎乘自行車比率與頻率。98年自行車使用狀況調查資料庫。
    呂東武(2002)。步態分析技術發展現況與未來趨勢。生物醫學報導,5,21-25。
    余銘倫(2004)。軀幹角度對自行車騎乘舒適度之效應分析。未出版碩士論文,明志科技大學,新北市。
    林光偉(2009)。不同高度深跳動作之下肢肌肉模擬。未出版碩士論文,國立體育大學運動科學研究所學位論文,桃園縣。
    邱敏琦、吳欣潔(2014)。自行騎乘姿勢對運動學、力學、生理負荷與主觀費力程度之影響。國防管理學報,35(2) , 57-67。
    邱文信、黃斯胤、楊振宏(2013)。探討自行車把手型式對上肢肌群活動之影響。人因工程學刊,15(1),45-51。
    胡祖武、江耀順、吳志銘(1997)。自行車騎姿電腦動態模擬之研究。大葉學報,6, 119-125。
    張錚璿、羅懷保、相子元(2010)。不同騎乘姿勢對自行車踩踏力量之影響。華人運動生物力學期刊,2,48-55。
    郭炳宏、鄭雅華(2010)。自行車車種與握把影響騎乘舒適度之初探。台灣感性學會研討會論文,307-312。
    陳一郎、何國彰(2016)。握把高度對自行車騎乘時肌群活動輪換之影響。人因工程學刊,18(2),93-101 。
    陳家祥、石翔至、相子元(2015)。最佳的自行車騎乘姿勢。人文社會科學研究,9(4),1 – 11。
    黃博駿(2009)。自由車運動發展及其傷害之研究。未出版碩士論文,國立臺灣體育大學,台中市。
    黃英豪(2010)。以下肢肌電訊號探討踏車運動座墊位置。未出版碩士論文,國立臺灣師範大學,台北市。
    黃宣霖(2011)。步行時下肢肌群推進與支撐之貢獻。未出版碩士論文,臺灣師範大學運動科學研究所學位論文,台北市。
    鍾印鈞(2007)。以把手壓力探討不同自行車種之把手設計研究。未出版碩士論文,大同大學工業設計學系所,台北市。
    羅瑭勻、駱燕萍、詹明昇、張家豪 (2017)。不同墊步模式對女子籃球選手非軸心腳膝關節負荷之差異。大專體育學刊,19(4),361-373。
    Andersen, K. V., & Bovim, G. (1997). Impotence and nerve entrapment in long distance amateur cyclists. Acta Neurologica Scandinavica, 95(4), 233-240.
    Brown, D. A., Kautz, S. A., & Dairaghi, C. A. (1996). Muscle activity patterns altered during pedaling at different body orientations. Journal of Biomechanics, 29, 1349-1356.
    Burke, E. R. (1981). Ulnar neuropathy in bicyclists. Physician and Sportsmedicine, 9, 53-56.
    Brown, D. A., Kautz, S. A., & Dairaghi, C. A. (1996). Muscle activity patterns altered during pedaling at different body orientations. Journal of biomechanics, 29(10), 1349-1356.
    Callaghan, M. J. (2005). Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 9, 226–236.
    Chen, Ching-Fu; Chen, Pei-Chun (2013). Estimating recreational cyclists' preferences for bicycle routes - Evidence from Taiwan. Transport Policy,26(SI),23-30.
    Chen, Yi-Lang; He, Kuo-Chang(2012). Changes in human cervical and lumbar spine curves while bicycling with different handlebar heights. Work-A Jurnal of Prevention Assessment & Rehabiltation,41, 5826-5827.
    Clarys, J. P., Alewaeters, K., & Zinzen, E. (2001). The influence of geographic variations on the muscular activity in selected sports movements. Journal of Electromyography and Kinesiology, 11, 451 - 457.
    Dorel, S, Couturier, A, & Hug, F. (2009). Influence of different racing positions on mechanical and electromyographic patterns during pedalling. Scandinavian Journal of Medicine & Science in Sports, 19(1), 44-54.
    Dettori, N. J., & Norvell, D. C. (2006). Non-traumatic bicycle injuries: A review of the literature. Sports Medicine, 36(1), 7-18.
    Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E., & De Zee, M. (2006). Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory, 14(8), 1100-1111.
    Dannenberg, Needle, Mullady, Kolodner( 1996). Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle. Amweican Journal of Sports Medicine,24(6),747-753.
    De Zee, M., Hansen, L., Andersen, T. B., Wong, C., Rasmussen, J., & Simonsen, E. B. (2003). On the development of a detailed rigid-body spine model.
    De Zee, M., Hansen, L., Wong, C., Rasmussen, J., & Simonsen, E. B. (2007). A generic detailed rigid-body lumbar spine model. Journal of biomechanics, 40(6), 1219-1227.
    Edwards,Lippold (1956).The relation between force and integrated electrical activity in fatigued muscle. Journal of Physiology-London,132(3),677-681.
    Fairclough, J., Hayashi, K., Toumi, H., Lyons, K., Bydder, G., & Phillips, N., et al.(2006). The functional anatomy of the iliotibial band during flexion andextension of the knee: Implications for understanding iliotibial band syndrome.Journal of Anatomy, 208(3), 309-316.
    Gnehm, P., Reichenbach, S., Altpeter, E. K. K. E. H. A. R. D. T., Widmer, H. A. N. S., & Hoppeler, H. A. N. S. (1997). Influence of different racing positions on metabolic cost in elite cyclists. Medicine and science in sports and exercise, 29(6), 818-823.
    Gregersen,Hull( 2003). Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions. Journal of Biomechanics,36(6)803-813.
    Li, L; Caldwell, GE(1998). Muscle coordination in cycling: effect of surface incline and posture. Journal of Applied Physiology,85( 3), 927-934.
    Mestdagh, K. (1998). Personal perspective: In search of an optimum cycling posture. Applied Ergonomics, 29, 325-334.
    Mellion, M. B. (1994). Neck and back pain in bicycling. Clinics in Sports Medicine, 13, 137-164.
    Muyor, J. M.; Zabala, M.(2016).Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility . International Jurnal of Sports Medicine,37(1),43-49.
    Muyor, Jose M.(2015). The influence of handlebar-hands position on spinal posture in professional cyclists. Jurnal of Back and Musculoskeletal Rehabilitation,28(1),167-172.
    Orizio, C., Baratta, R.V., Zhou, B.H., Solomonow, M., & Veicsteinas, A. (2000). Force and surface mechanomyogram frequency responses in cat gastrocnemius. Journal of Biornechanics, 33(4), 427-433.
    Pecina,Bojanic,(1993). musculocutaneous nerve entrapment in the upper arm. International Orthopaedics,17(4),232-234.
    Puranik, Long,Coffman,(1998). Profile of pediatric bicycle injuries. Southern Medical Journal ,91(11),1033-1037.
    Salai, M., Brosh, T., Blankstein, A., Oran, A., & Chechik, A. (1999). Effect of changing the saddle angle on the incidence of low back pain in recreational bicyclists. British journal of sports medicine, 33(6), 398-400.
    Sauer, Julie L.; Potter, James J.; Weisshaar, Christine L.(2007). Influence of gender, power, and hand position an pelvic motion during seated cycling. Medicine and Science in Sports and Exercise,39(12), 2204-2211.
    Schwellnus, MP., Derman, EW.(2005). Early Treatment Of Exercise Induced Muscle Damage With Meloxicam Affects Muscle Cell Membrane Permeability. Medicine and Science in Sports and Ewercise,37(5),S318-S318.
    Segers, M. J. M., Wink, D., & Clevers, G. J. (1997). Bicycle-spoke injuries: a prospective study. Injury, 28(4), 267-269.
    Silberman , Webner, David, Collina, Steven, Shiple, Brian(2005). Road bicycle fit. Clinical Journal of Sport Medicine,15(4),269-274.
    So, R. C., Ng, J. K.-F., & Ng, G. Y. (2005). Muscle recruitment pattern in cycling: a review. Physical Therapy in Sport, 6(2), 89-96
    S. Duc , W. Bertucci, , J.N. Pernin , F. Grappe.(2008). Muscular activity during uphill cycling: Effect of slope, posture, hand grip position and constrained bicycle lateral sways.journal of Electromyography and Kinesiology,18(1),116-127
    Thompson, M. J., & Rivara, F. P. (2001). Bicycle-related injuries. American Family Physician, 63(10), 2007-2014.
    Waechter , Riess , Zacharia (2002). A multibody model for the simulation of bicycle suspension systems. Vehiclssystem Dynamics,37(1),3-28.

    QR CODE