研究生: |
鄭仁瑋 Cheng, Jen-Wei |
---|---|
論文名稱: |
鍺基板上不同界面層工程的穿隧氧化層對電荷陷阱式記憶體操作特性 Engineering of tunneling oxide with different interfacial layers on operation characteristics of charge-trapping memory devices with Ge substrate |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: |
趙天生
Chao, Tien-Sheng 劉致為 Liu, Chee-Wee |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 129 |
中文關鍵詞: | 快閃記憶體 、高介電值材料 、鍺基板 、界面層 |
外文關鍵詞: | flash memory, high-k, Ge-substrate, interfacial layer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於浮動式閘極快閃記憶體無法滿足元件微縮發展的趨勢,因此利用電荷陷阱式快閃記憶體式取代浮動式閘極結構元件是未來發展的趨勢。然而傳統SONOS元件以氮化矽做為電荷儲存層的結構,在發展到次微米以下時就無法再以降低穿隧氧化層厚度的方式來提升元件操作效率,因此便引進了高介電值材料來取代傳統ONO結構以提升元件操作特性。而使用鍺基板取代矽基板,藉由能帶工程讓通道上會有更多的電子電洞對可以被產生,希望藉此異質材料的應用可以達到較快的操作速度。
本實驗用電容結構,在穿隧氧化層中,比較不同電漿處理的界面層,藉由改變界面層材料及堆疊的結構,探討對於電荷陷阱式快閃記憶體元件的效率影響。以電容結構,為了先模擬一個在鍺基板上的快閃記憶體電容元件,我們首先在鍺基板上選擇簡單易形成的界面層,二氧化鍺應用於快閃記憶體上。並發現二氧化鍺堆疊的界面層擁有好的品質。之後,再比較二氧化鍺和氮氧化鍺不同界面層的操作特性,藉由堆疊的界面層方式,來探討對於電荷陷阱快閃記憶體元件的操作特性影響。最後再以電容結構,比較單層或堆疊的氮氧化鋁以及比較不同的界面層,來探討界面層對於電荷陷阱快閃記憶體元件的操作特性影響。
而經由實驗結果發現,使用二氧化鍺作為界面層的元件,可以有效的提升快閃記憶體的操作速度,而且可靠度在可接受的範圍。使用氮氧化鍺作為界面層的元件,耐久力可以接近100K次,而氮氧化鋁作為界面層的元件,特性則在前兩者界面層材料之間。皆具有比矽基板元件更快的操作速度,並同時能些許提升快閃記憶體之可靠度特性。
參考資料
[1] Min She, “Semiconductor Flash Memory Scaling”, 2003.
[2] Marvin H. White, et al., “On the Go with SONOS”, IEEE Circuit &Device, JULY 2000, p. 22.
[3] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, vol. 20, No.2, JUNE 1997, p. 190.
[4] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, vol. 5, 2001, pp. 5-2383.
[5] K.Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices, vol. 42, No.1, JANUARY 1995, p. 150.
[6] T.Sugizaki, et al., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, IEEE Symposium on VLSI Technology Digest of Technical Paper, 2003, p. 27.
[7] Yan-Ny Tan, et al., “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation”, IEEE Transactions on Electron Devices, vol. 53, No 4, April 2006, pp. 654-662.
[8] Yan-Ny Tan, et al., “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer”, IEEE Transactions on Electron Devices , vol. 51, No.7, 2004, p. 1143.
[9] Moon Sig Joo, et al. “Dependence of Chemical Composition Ratio on
Electrical Properties of HfO2 Al2O3 Gate Dielectric”, Jpn. J. Appl. Phys., No.3A, March 2003, pp. 1220-1222.
[10] Ping-Hung Tsai, et al., “Charge-Trapping-Type Flash Memory Device With Stacked High-k Charge-Trapping Layer”, IEEE Electron Device Letters, vol. 30, No.7, July 2009, pp. 775-777.
[11] Chi-Chao Wang, et. al., “Enhanced Band-To-Band-Tunneling-Induced Hot - Electron Injection In p-Channel Flash by Band-Gap Offset Modification”, IEEE Electron Device Letters, vol. 27, No 9, September 2006, pp. 749-751.
[12] Qingqing Liang, J.D. Cressler, Guofu Niu, R.M. Malladi, K. Newton, D.L. Harame, “A physics-based high-injection transit-time model applied to barrier effects in SiGe HBTs”, in IEEE Trans. Electron Devices, vol. 49, 2002, pp. 1807-1813.
[13] Wu Lu, Almaz Kuliev, Steven J. Koester, Xie-WenWang, Jack O. Chu, Tso-Ping Ma and Ilesanmi Adesida, “High Performance 0.1_m Gate-Length P-Type SiGe MODFET’s and MOS-MODFET’s”, in IEEE Trans. Electron Devices, 2000, pp. 1645-1652.
[14] Q. Ouyang, X. D. Chen, S. Mudanai, D. L. Kencke, X. Wang, A. F. Tasch, and L. F. Register, and S. K. Banerjee, “Two-Dimensional Bandgap Engineering in a Novel Si/SiGe pMOSFET With Enhanced Device Performance and Scalability”, in IEEE SISPAD, 2000, pp. 151-154.
[15] Simon Tam, et al., “Lucky Electron Model of Channel Hot Electron Injection in MOSFET’s”, in IEEE Transaction on Electron Devices, vol. ED31, No.9, September 1984.
[16] Lei Sun, Liyang Pan, and Ying Zeng., “Effect of CHE and CHISEL Program on the Characteristics of SONOS Memory.”, in IEEE , 2004, pp. 695~698.
[17] Souvik Mahapatra, S. Shukuri, and Jeff Bude, “CHISEL Flash EEPROM—Part I: Performance and Scaling”, in IEEE Trans. Electron Devices, vol. 49, 2002, pp. 1296-1301.
[18] Souvik Mahapatra, S. Shukuri, and Jeff Bude, “CHISEL Flash EEPROM—Part II: Reliability”, in IEEE Trans. Electron Devices, vol. 49, 2002, pp. 1302 -1307.
[19] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a P-channel Cell”, in IEDM Tech. Dig., 1995, pp. 179-182.
[20] Takahiro Ohnakado, Hiroshi Onoda, Osamu Sakamoto, Kiyoshi Hayashi, Naho Nishioka, Hiroshi Takada, Kazuyuki Sugahara, Natsuo Ajika, and Shin-ichi Satoh, “Device Characteristics of 0.35 m P-Channel DINOR Flash Memory Using Band-to-Band Tunneling-Induced Hot Electron (BBHE) Programming”, in IEEE Trans. Electron Devices, vol. 46, 1999, pp. 1866-1871.
[21] Kailash Gopalakrishnan, Raymond Woo, Rohit Shenoy, Yusuke Jono, Peter B. Griffin, and James D. Plummer, “Novel Very High IE Structures Based on the Directed BBHE Mechanism for Ultralow-Power Flash Memories”, in IEEE Electron Device Letters, vol.26 , 2005, pp. 212-215.
[22] S. S. Chung, S. T. Liaw, C. M. Yih, Z. H. Ho, C. J. Lin, D. S. Kuo, and M. S. Liang, “N-Channel Versus P-Channel Flash EEPROM Which one has better reliabilities”, in IEEE Annual lnternatlonal Relrablllty Physics Symposium, 2001, pp. 67-72.
[23] M. Specht, et al., “Retention time of novel charge trapping memories using Al2O3 dielectrics”, IEEE Symposium on VLSI, 2003, p. 155.
[24] L. M. Weltzer and S. K. Banerjee, “Enhanced CHISEL Programming in Flash Memory Devices with SiGe Buried Layer,” Non-Volatile Memory Technology Symposium, 2004, pp. 31-33.
[25] Chi-Chao Wang, Kuei-Shu Chang-Liao, Chun-Yuan Lu and Tien-Ko Wang, IEEE Electron Device Lett., vol. 27, 2006, pp. 749–751.
[26] Scott C. Wolfson and Fat Duen Ho, IEEE Trans. Electron Devices, vol. 57, 2010, pp. 2499–2503.
[27] Chi On Chui, et al., Appl. Phys. Lett., vol. 83, 2003, pp. 3713–3715.
[28] Rui Zhang, et al.,TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 2, 2012
[29] Choong Hyun Lee, et al., TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, 2011
[30] R. Zhang, et al., VLSI, 978-1-4673-0847-2, 2012
[31] Chi On Chui, Member, IEEE, Fumitoshi Ito, Member, IEEE, and Krishna C. Saraswat, Fellow, IEEE , “Nanoscale Germanium MOS Dielectrics”,IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 7, JULY 2006
[32] Heiji Watanabe*, Katsuhiro Kutsuki, Iori Hideshima, Gaku Okamoto,
Takuji Hosoi and Takayoshi Shimura, “High-quality GeON Gate Dielectrics formed by Plasma Nitridation of Ultrathin Thermal Oxides on Ge(100)”, IEEE, 2010
[33] Rui Zhang,*,z Takashi Iwasaki, Noriyuki Taoka, Mitsuru Takenaka,and Shinichi Takagi, “Suppression of ALD-Induced Degradation of Ge MOS Interface
Properties by Low Power Plasma Nitridation of GeO2”, Journal of The Electrochemical Society, 158 (8) G178-G184 ,2011
[34]G. Molas, et al, “Investigation of charge-trap memories with AlN based band engineeredstorage layers”, Solid-State Electronics 58, 68-74, 2011
[35]Kyoung H. Kim, Roy G. Gordon, Andrew Ritenour and Dimitri A. Antoniadis, APPLIED PHYSICS LETTERS 90, 212104 , 2007
[36]S. J. Whang, S. J. Lee, Fei Gao, Nan Wu, C. X. Zhu, Ji Sheng Pan, Lei Jun Tang, D. L. Kwong, “Germanium'p- & n-MOSFETs fabricated with novel surface passivation (plasma-PH3 and thin AIN) and TaN/HfOz Gate stack”, IEEE, 20043
[37]Andrew Ritenour, Member, IEEE, J. Hennessy, and D. A. Antoniadis, Fellow, IEEE, “Investigation of Carrier Transport in Germanium MOSFETs With WN/Al2O3/AlN Gate Stacks”, IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 8, AUGUST 2007
[38]Fei Gao and S. J. Lee, J. S. Pan, L. J. Tang, Dim-Lee Kwong, “Surface passivation using ultrathin AlNx film for Ge–metal–oxide–semiconductor devices with hafnium oxide gate dielectric”, APPLIED PHYSICS LETTERS 86, 113501, 2005
[39]C. J. Huang, C. H. Yang, C. Y. Hsueh, J. H. Lee, Y. T. Chang, and S. C. Lee, Fellow, IEEE, “Performance Enhancement of Silicon Nanowire Memory by Tunnel Oxynitride, Stacked Charge Trap Layer, and Mechanical Strain”, IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 1, JANUARY 2012