研究生: |
許芷琳 Hsu, Chih Lin |
---|---|
論文名稱: |
以生命週期評估製微藻油脂之最適化萃取方式 Utilization of Life Cycle Assessment to Evaluate the Environmental Impact of Microalgae Oil Extraction |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
蔣本基
談駿嵩 王清海 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 生命週期評估 、SimaPro 7.3 、微藻油脂 、二氧化碳膨脹甲醇/乙醇 |
外文關鍵詞: | SimaPro 7.3, microalgae oil, CO2-expanded methanol |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於大量使用煤、石油、天然氣等石化燃料,使地球暖化日漸加劇;台灣地區因自產能源相當貧乏,約99%以上的能源消費均仰賴進口,因此為抑低石化能源釋出CO2及提高能源供應自主性等多重目的,積極開發綠色再生能源已是必然趨勢及政策目標。由於藻類之生長速率較植物快速,在各種生質物中,藻類具有生長快速及CO2零排放之優點,進而降低二氧化碳濃度。微藻製備生質柴油之過程,首先收集微藻並脫水、萃取油脂、再進行轉酯化。過去藻油萃取時需使用大量有機溶劑造成環境污染。因此,藉由本研究找出對環境友善的萃取溶劑與方法,以符合減碳與綠色製程之本意。
本研究方法為回顧性分析,針對微藻製備生質柴油進行系統盤查分析,並參考文獻估計藻油萃取的過程中所需投入的萃取溶劑及用電,依據萃取方式不同分為A、B、C、D、E、和F六個情境,其萃取溶劑分別為氯仿及甲醇、二氯甲烷及甲醇、環己烷及異丙醇、超臨界流體二氧化碳、二氧化碳膨脹甲醇、以及二氧化碳膨脹乙醇,並計算六個情境之藻油萃取過程對環境之影響。本研究選擇生命週期評估軟體SimaPro 7.3做為評估工具,以Eco-Indicator99為衝擊評估模式量化環境衝擊數據。
藻油萃取過程中僅針對情境A-F中所投入之溶劑進行比較,結果顯示情境D、E、F之環境衝擊為六個情境中較低者,接著,進一步評估萃取過程中用電(台灣主要發電:核能22.7%、天然氣35%、及煤42.3%)對環境衝擊,情境D之環境衝擊值最大(18.988 Pt)且生產每公斤藻油之用電成本最高(769元),主因為其操作時需高壓高溫使得耗電量相對於其他情境大,然而,情境E及F之環境衝擊小(0.81 Pt 及0.30 Pt)且生產每公斤藻油之用電成本低(26元及7元),因其操作時不需高壓高溫使耗電量低。為達綠色製程,評估太陽能或風能替代台灣主要發電方式之可行性,以太陽能或風力發電時,情境D之環境的衝擊降為台灣主要發電(18.988 Pt)的三分之一(6.573 Pt)或四分之一(3.897 Pt),同樣生產每公斤藻油之碳排量降為台灣主要發電(218.9公斤)之十二分之一(18.1公斤)或二十四分之一(9公斤);情境E之碳排量降為台灣主要發電(8.9公斤)之四分之一(太陽能2.2公斤,風能1.9公斤);情境F之碳排量則降為台灣主要發電(3.2公斤)之二分之一(太陽能1.3公斤,風能1.2公斤)。
微藻製藻油之六個情境中,情境E及F為低環境衝擊、低成本且低碳排量之萃取方式。太陽能及風能發電成本雖比台灣目前主要發電成本高,但我們只有一個地球,發展生質柴油的同時必須減緩溫室效應情形繼續惡化。澎湖為具有發展風力發電潛能之地點,若以島上火力發電廠所排放的二氧化碳,與本研究所建議之藻油萃取方法結合,評估設置藻油生產廠之可行性,可以達成減碳及綠色製程之本意。
It is known that oil extraction processes may require large amounts of organic solvents, which have adverse effects on the nutritional and functional properties of the extracted compounds as well as on human health. Therefore, it is essential to develop novel approach of lipid extraction, which is an effective eco-friendly process.
We utilized SimaPro 7.3 as the life cycle assessment tool with Eco-indicator 99 method to evaluate the environmental impact of various microalgae oil extraction. The extractants taken into account include chloroform and methanol (Scenario A), dichloromethane and methanol (Scenario B), isopropanol and cyclohexane (Scenario C), supercritical-CO2 (Scenario D), CO2-expanded methanol (Scenario E), and CO2-expanded ethanol (Scenario F) respectively. The goal of our LCA calculation is to quantitatively interpret the overall environmental impacts in the end of microalgae oil extraction by different extraction methods when 1 kg microalgae oil is extracted (function unit). To achieve this objective, individual input energy (electricity), raw material (extractant), and process (electricity) are taken into account and converted into the equivalent extractant/power consumption. A linear correlation between usage and power consumption is assumed to convert experimental data into function unit.
In this study, environmental impact of extractants in Scenario D, E and F are relative low. Take electricity into considerate, environmental impact of Scenario D is highest and electricity cost of producing one unit of microalgae is the highest over others; environmental impact of Scenario E and F are low and low electricity cost. To achieve the goal of green technology, we assess viability of solar power and wind power for alternative energy. Environmental impact of Scenario D is only one third and one fourth when solar and wind energy is applied. The carbon footprint of Scenario D is only one twelfth and one twenty fourth when solar and wind energy is applied; the carbon footprint of Scenario E and F are both lower than other scenarios.
The comparison indicates that both Scenario E and F are the relative appropriate methods for extracting microalgae lipids because their low carbon emission, low cost and eco-friendly. Finally, Penghu of Taiwan has been considered a potential location for developing renewable energy such as wind. Using CO2 emitted from local thermal power plant as carbon source, combining with optimized extraction method proposed in this study, to establish a microalgae oil plant at Penghu of Taiwan.
1. T.A. Milne, R.J.E., N. Nagle, "Catalytic conversion of microalgae and vegetable oils to premium gasoline, with shape-selective zeolites." Biomass, 1990. 21: p. 219–232.
2. Lam, M.K. and K.T. Lee, "Microalgae biofuels: A critical review of issues, problems and the way forward." Biotechnol Adv, 2012. 30(3): p. 673-90.
3. Li Y, W.B., Wu N, Lan CQ., "Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans." Applied Microbiology and Biotechnology, 2008: p. 629–36.
4. Li Y, H.M., Wu N, Lan CQ, Dubois-Calero N., "Biofuels from microalgae." Biotechnology Progress. 2008. 24: p. 815–20.
5. Starckx, S., "A place in the sun - Algae is the crop of the future", according to researchers in Geel Flanders Today. 2012.
6. Cardozo, K.H.-M.T., Guaratini; Marcelo P., Barros; Vanessa R., Falcão;Angela P., Tonon; Norberto P., Lopes; Sara, Campos; Moacir A., Torres; Anderson O., Souza; Pio, Colepicolo; Ernani, Pinto "Metabolites from algae with economical impact." 2006. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology(146): p. 60-78.
7. Y., C., "Biodiesel from microalgae." Biotechnol Adv, 2007(25): p. 249-306.
8. P.M. Schenk, S.R.T.-H., E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, et al., "Second generation biofuels: high-efficiency microalgae for biodiesel production." BioEnergy Res, 2008. 1: p. 20–43.
9. F., M., "Biodiversity and application of microalgae." J Ind Microbiol Biotechnol 1996. 17: p. 477-89.
10. B. Viswanath, T.M., S. White, F. Bux, "The microalgae – a future source of biodiesel." Dynamnic Biochem, Process Biotechnol Mole Biol, 2010. 4: p. 37-47.
11. Demirbas A. , "Competitive liquid biofuels from biomass." Appl Energy; in press.
12. A.L. Ahmad, N.H.M.Y., C.J.C. Derek, J.K. Lim, "Microalgae as a sustainable energy source for biodiesel production: a review." Renew Sustain Energy Rev, 2011. 15: p. 584-593.
13. I. Rawat, R.R.K., T. Mutanda, F. Bux, "Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production."
Appl Energy; in press, 2011. 88: p. 3411-3424.
14. R. Ranjith-Kumar, P.H.R., V.V. Subramanian, V. "Sivasubramanian and Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry." J Food Sci Technol, 2011.
15. L. Brennan, P.O., "Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products." Renew Sustain Energy Rev, 2010. 14: p. 557–57.
16. Huang, G.H., et al., "Biodiesel production by microalgal biotechnology." Applied Energy, 2010. 87(1): p. 38-46.
17. Mata TM, M.A., Caetano NS., "Microalgae for biodiesel production and other applications: a review." Renew Sustain Energy Rev, 2010(14): p. 217–32.
18. AH., D., "Inexpensive oil and fats feedstocks for production of biodiesel." Energy Educ Sci Technol Part A, 2009. 23: p. 1-13.
19. MF., D., "Microalgae as a feedstock for biodiesel.". Energy Educ Sci Technol Part A, 2010. 25: p. 31–43.
20. A., D., "Production of biodiesel from algae oils." Energy Sources Part A, 2009. 31: p. 163–8.
21. I., O., "Qualifying of safflower and algae for energy." Energy Educ Sci Technol Part A, 2009. 23: p. 145–51.
22. Lundquist TJ, W.I., Quinn NWT, Benemann JR. , "A realistic technology and engineering assessment of algae biofuel production." Energy Biosciences Institute, University of California, 2010
23. S.A., N., "Estudo de localização de unidade industrial para produção de microalgas em portugal Necton, Companhia Portuguesa de Culturas Marinhas," S.A, Olhão, Portugal, 1990: p. 71.
24. Verween A, Q.B., Casteleyn G, Fernandez GA, Leu S, Biondi N, et al. "Algae and aquatic biomass for a sustainable production of 2nd generation biofuels: Deliverable 1.6 - mapping of natural resources in artificial, marine and freshwater bodies." 2011 1/9].
25. Weissman, J.C., R.P. Goebel, and J.R. Benemann, "Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation." Biotechnol Bioeng, 1988. 31(4): p. 336-44.
26. Prof. Francisco Gabriel Acién Fernández, 2011: University of Almeria, Spain.
27. Acien, F.G., et al., "Production cost of a real microalgae production plant and strategies to reduce it." Biotechnol Adv, 2012. 30(6): p. 1344-53.
28. Sheehan J, D.T., Benemann J, Roessler P. , "A look back at the US Department of energy’s aquatic species program - biodiesel from algae," NREL/TP-580-24190., 1998: National Renewable Energy Laboratory: Golden, Colorado.
29. Darzins A, P.P., Edye L., "Current status and potential for algae biofuels production: a report to IEA Bioenergy Task39", I.E.A. (IEA), Editor 2010.
30. Razzak, S.A., et al., "Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-A review." Renewable & Sustainable Energy Reviews, 2013. 27: p. 622-653.
31. Demorais MG, C.J., "Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide." Energy Convers Manage, 2007.
32. Molina Grima, E., F. Acien Fernandez, F. Garcia Camacho, and Y. Chisti., "Photobioreactors: Light regime, mass transfer, and scale up." Journal of Biotechnology, 1999. 70: p. 231-47.
33. M.A., B., "Commercial production of microalgae: ponds, tanks, tubes and fermenters." J Biotech, 1999. 70: p. 313-321.
34. Shen, Y., et al., "Microalgae Mass Production Methods." Transactions of the Asabe, 2009. 52(4): p. 1275-1287.
35. Olaizola, M., "Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors." Journal of Applied Phycology, 2000. 12(3-5): p. 499-506.
36. B. Viswanath, T.M., S. White, F. Bux, "The microalgae - a future source of biodiesel." Dynamnic Biochem, Process Biotechnol Mole Biol, 2010. 4: p. 37-47.
37. Kim, Y.H., et al., "Ionic liquid-mediated extraction of lipids from algal biomass." Bioresour Technol, 2012. 109: p. 312-5.
38. Zhang, X., Rong, J., Chen, H., He, C., Wang, Q., "Current status and outlook in the application of microalgae in biodiesel production and environmental protection." Front. Energy Res., 2014. 2(32): p. 1-15.
39. Lee J-Y, Y.C., Jun S-Y, Ahn C-Y, Oh H-M "Comparison of several methods for effective lipid extraction from microalgae." Bioresour Technol 2010. 101: p. s75-s77.
40. Burja, A.M., et al., "Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18." J Agric Food Chem, 2007. 55(12): p. 4795-801.
41. Lewis, T., P.D. Nichols, and T.A. McMeekin, "Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs." J Microbiol Methods, 2000. 43(2): p. 107-16.
42. Hamilton S, H.R., Sewell PA "Extraction of lipids and derivative formation.In Lipid Analysis: a practical approach." , E.b.H.R. HS., Editor 1992, New York Oxford University Press. p. 13-64.
43. Ryckebosch E, M.K., Foubert I "Optimisation of an analytical procedure for extraction of lipids from microalgae." J Am Oil Chem Soc, 2012. 89: p. 189-198.
44. Li, Y., et al., "A comparative study: the impact of different lipid extraction methods on current microalgal lipid research." Microbial Cell Factories, 2014. 13(1): p. 1.
45. Mendes RL, N.B., Cardoso MT, Pereira AP, Palavra AF "Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae." Inorg Chim Acta, 2003. 356: p. 328-334.
46. Guil-Guerrero JL, B.E., Rebolloso-Fuentes MM "Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum." Bioseparation 2009. 9: p. 299-306.
47. Gonzalez MJI, M.A., Grima EM, Gimenez AG, Cartens M, Cerdan LE "Optimization of fatty acid extraction from Phaeodactylum tricornutum UTEX 640 biomass." J Am Oil Chem Soc, 1998. 75: p. 1735-1740.
48. Funteu F, G.C., Wu BZ, Tremolieres A "Effects of environmental factors on the lipid metabolism in Spirulina platensis." Plant Phys Biochem 1997. 35: p. 63-71.
49. Wang L, P.B., Sheng JC, Xu J, Hu QH "Antioxidant activity of Spirulina platensisextracts by supercritical carbon dioxide extraction." Food Chem, 2007. 105: p. 36-41.
50. Mercer P, A.R., "Development in oil extraction from microalgae." Eur J Lipid Sci Technol 2011. 21: p. 1-9.
51. Geciova, J., D. Bury, and P. Jelen, "Methods for disruption of microbial cells for potential use in the dairy industry - a review." International Dairy Journal, 2002. 12(6): p. 541-553.
52. Sazdanoff, N., "Modeling and simulation of the algae to biodiesel fuel cycle", 2006: The Ohio State University, Ohio, USA
53. Mendes, R.L., et al., "Supercritical CO2 Extraction of Carotenoids and Other Lipids from Chlorella-Vulgaris." Food Chemistry, 1995. 53(1): p. 99-103.
54. Joback, K.K.a.R., R., "Estimation of Pure Component Properties from Group Contribution." Chem. Eng. Comm., 1987. 57: p. 233-247.
55. Demirbas, A. and M.F. Demirbas, "Importance of algae oil as a source of biodiesel." Energy Conversion and Management, 2011. 52(1): p. 163-170.
56. Demirbas, A., "Production of Biodiesel from Algae Oils." Energy Sources Part a-Recovery Utilization and Environmental Effects, 2009. 31(2): p. 163-168.
57. L. Soha, J.Z., "Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide." Green Chem, 2011. 13: p. 1422–1429.
58. Halim, R., M.K. Danquah, and P.A. Webley, "Extraction of oil from microalgae for biodiesel production: A review." Biotechnology Advances, 2012. 30(3): p. 709-732.
59. Lang, Q. and C.M. Wai, "Supercritical fluid extraction in herbal and natural product studies - a practical review." Talanta, 2001. 53(4): p. 771-82.
60. Hamburger, M., D. Baumann, and S. Adler, "Supercritical carbon dioxide extraction of selected medicinal plants--effects of high pressure and added ethanol on yield of extracted substances." Phytochem Anal, 2004. 15(1): p. 46-54.
61. M.T. Golmakani, J.A.M., K. Rezaei, E. Ibañez "Expanded ethanol with CO2 and pressurized ethyl lactate to obtain fractions enriched in γ-Linolenic acid from Arthrospira platensis (Spirulina)" J. Supercrit. Fluids, 2012. 62: p. 109–115.
62. L. Yang, Q.P., G.L. Rempel, "Recovery of Wilkinson’s catalyst from polymer based matrix using carbon dioxide expanded methanol." J. Supercrit. Fluids, 2012. 68: p. 104–112.
63. Lin, H.W., et al., "CO2 promoted hydrogenolysis of benzylic compounds in methanol and water." Rsc Advances, 2013. 3(38): p. 17222-17227.
64. Jessop, P.G. and B. Subramaniam, "Gas-expanded liquids." Chemical Reviews, 2007. 107(6): p. 2666-2694.
65. I.H. Lin, C.S.T., "Measurement of diffusion coefficients of p-chloronibtrobenzene in CO2-expanded methanol." J. Supercrit. Fluids, 2008. 46: p. 112-117.
66. Sih, R., et al., "Viscosity measurements on saturated gas-expanded liquid systems - Ethanol and carbon dioxide." Journal of Supercritical Fluids, 2008. 43(3): p. 460-468.
67. Subramaniam, B., "Gas-expanded liquids for sustainable catalysis and novel materials: Recent advances." Coordination Chemistry Reviews, 2010. 254(15-16): p. 1843-1853.
68. Hallett, J.P., et al., "Probing the cybotactic region in gas-expanded liquids (GXLs)." Acc Chem Res, 2006. 39(8): p. 531-8.
69. Eckert, C., et al., "Tunable solvents for fine chemicals from the biorefinery." Green Chemistry, 2007. 9(6): p. 545-548.
70. Herrero, M., et al., "Compressed fluids for the extraction of bioactive compounds." Trac-Trends in Analytical Chemistry, 2013. 43: p. 67-83.
71. Reyes, F.A., et al., "Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol." Journal of Supercritical Fluids, 2014. 92: p. 75-83.
72. Paudel, A., et al., "Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2." Bioresour Technol, 2015. 184: p. 286-90.
73. Wyatt, V.T., et al., "Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids." Journal of Supercritical Fluids, 2005. 36(1): p. 16-22.
74. Sturm, B.S.M. and S.L. Lamer, "An energy evaluation of coupling nutrient removal from wastewater with algal biomass production." Applied Energy, 2011. 88(10): p. 3499-3506.
75. Joshi, S., "Product Environmental Life Cycle Assessment Using Input Output Techniques." Journal of Industrial Ecology 2000. 3(2-3): p. 95-120.
76. Udo De Haes, H.A., "Handbook of Industrial Ecology. Industrial ecology and life cycle assessment, ed." Cheltenham2002, UK: Edward Elgar.
77. Kadam, K.L., "Environmental implications of power generation via coal microalgae cofiring Energy", 2001. 27(10): p. 905-922.
78. Pfromm, P.H., V. Amanor-Boadu, and R. Nelson, "Sustainability of algae derived biodiesel: A mass balance approach." Bioresource Technology, 2011. 102(2): p. 1185-1193.
79. Pant, D., et al., "An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects." Renewable & Sustainable Energy Reviews, 2011. 15(2): p. 1305-1313.
80. Scott, S.A., et al., "Biodiesel from algae: challenges and prospects." Current Opinion in Biotechnology, 2010. 21(3): p. 277-286.
81. Xu, L.X., et al., "Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis." Bioresource Technology, 2011. 102(8): p. 5113-5122.
82. Mutanda, T., S. Karthikeyan, and F. Bux, "The Utilization of Post-chlorinated Municipal Domestic Wastewater for Biomass and Lipid Production by Chlorella spp. Under Batch Conditions." Applied Biochemistry and Biotechnology, 2011. 164(7): p. 1126-1138.
83. Lardon, L., et al., "Life-Cycle Assessment of Biodiesel Production from Microalgae." Environmental Science & Technology, 2009. 43(17): p. 6475-6481.
84. Sheehan J, D.T., Benemann J, Roessler P., "A look back at the US Department of Energy’s aquatic species program-biodiesel from algae." 1998, National renewable energy laboratory, Golden, CO.
85. Sander, K. and G.S. Murthy, "Life cycle analysis of algae biodiesel." International Journal of Life Cycle Assessment, 2010. 15(7): p. 704-714.
86. J. Yang, M.X., X. Zhang, Q. Hu, M. Sommerfeld, Y. Chen, "Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance." Bioresour Technol, 2011. 102: p. 159-165.
87. M.J. Groom, E.M.G., P.A. Townsend, "Biofuels and biodiversity: principle for creating better policies for biofuel production." Conserv Biol, 2008. 22: p. 602-609.
88. Campbell, P.K., T. Beer, and D. Batten, "Life cycle assessment of biodiesel production from microalgae in ponds." Bioresource Technology, 2011. 102(1): p. 50-56.
89. Mark Goedkoop, A.D.S., Michiel Oele, Douwe de Roest, Marisa Vieira and Sipke Durksz," SimaPro 7.3 Tutorial" 2010.
90. Bligh, E.G. and W.J. Dyer, "A rapid method of total lipid extraction and purification." Can J Biochem Physiol, 1959. 37(8): p. 911-7.
91. Cequier-Sanchez E, R.C., Ravelo AG, Zarate R, "Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures." J Agr Food Chem, 2008. 56: p. 4297-4303.
92. Schlechtriem CH, F.U., Becker K, "Effect of different lipid extraction methods on 13 C of lipid and lipid-free fraction of fish and different fish feeds." Isot Environ Health Stud 2003. 39: p. 135-140.
93. Ashok Paudela, M.J.J., Spencer H. Stubbinsa, Pascale Champagneb, Philip G. Jessopa, "Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2." Bioresour Technol, 2015. 184: p. 286-290.
94. Guinée et al., J.B.G., M. Gorrée, R. Heijungs, G. Huppes, R. Kleijn, A. Koning, L. de Oers, A. van Wegener Sleeswijk, S. Suh, H.A. Udo de Haes, H. de Bruijn, R. Duin, M.A.J. van Huijbregts, "Handbook on Life Cycle Assessment" 2002, The Netherlands Kluwer Academic Publishers, Dordrecht
95. (SETAC), S.o.E.T.a.C., "Guidelines for Life−cycle Assessment: A Code of Practice", S.w.i. Sesimbra, Editor 1993: Portugal.
96. (ISO), I.S.O., "Environmental management - Life cycle assessment - Principles and framework - ISO 14040", 1996: Paris.
97. Frankl, P.a.F.R.e., "Life Cycle assessments in Industry and Business, Adoption Patterns", Applications and Implications, N.Y. Springer., Editor 2000.
98. (SAIC), S.A.I.C., "Life cycle assessment:principles and practice, O.o.a.D. National Risk Management Research Laboratory, U.S. Environmental Protection Agency", Editor 2006: U.S. Environmental Protection Agency Document EPA/600/R-06/060.
99. Kindler TP, C.W., Wine PH, Cunnold DM, Alyea FN, Franklin JA, "The fate of atmospheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2Cl4, C2HCl3, CH3CCl3, and CHCl3." Journal of Geophysical Research. 1995. 100(D1): p. 1235-1251.
100. Gürtler KR, K.K., "Photooxidation of exhaust pollutants: ii. Photooxidation of chloromethanes, degradation efficiencies, quantum yields and products." Chemosphere, 1994. 28(7): p. 1289-1298.
101. Sherratt, P.J., et al., "Evidence that human class Theta glutathione S-transferase T1-1 can catalyse the activation of dichloromethane, a liver and lung carcinogen in the mouse - Comparison of the tissue distribution of GST T1-1 with that of classes Alpha", Mu and Pi GST in human. Biochemical Journal, 1997. 326(Pt3): p. 837-846.
102. Baayen, H., "Eco-indicator 99 Manual for Designers"2000.
103. Casas, L., et al., "Effect of the addition of cosolvent on the supercritical fluid extraction of bioactive compounds from Helianthus annuus L." Journal of Supercritical Fluids, 2007. 41(1): p. 43-49.
104. Jaramillo, P., W.M. Griffin, and H.S. Matthews, "Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation." Environmental Science & Technology, 2007. 41(17): p. 6290-6296.
105. Jewell D. Wilson, M.E.F., Fernando Llados, Mona Singh, Gary L. Diamond, "Toxicological Profile for Methylene Chloride. " A.f.T.S.a.D. Registry, Editor 2000: Atlanta, Georgia.