研究生: |
林柏衡 Lin, Po Heng |
---|---|
論文名稱: |
分切合整數位控制之 無變壓器型不斷電系統 D-Σ Digital Control Based Transformerless UPS |
指導教授: |
吳財福
Wu, Tsai Fu |
口試委員: |
陳裕愷
Chen, Yu Kai 余國瑞 Yu, Gwo Ruey 羅有綱 Lo, Yu Kang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 換流器 、無變壓器型 、不斷電系統 、分切合整控制法 、重複控制 |
外文關鍵詞: | inverter, transformerless, uninterruptible power supply, D-∑ digital control, repetitive control |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在眾多不斷電系統中,大多都使用變壓器做電氣隔離以降低環流,但變壓器的使用增加系統成本與體積,其運作時產生之熱能會減少功率元件的穩定性與壽命。無變壓器型不斷電系統可經由功因校正電路調節直流鏈與交流電網間的電力潮流,同時由電壓型換流器提供穩定的輸出電壓,配合雙向充放電器與電池達到不斷電之功能,並使用分切合整數位控制法與開關切換方式以克服傳統abc轉dq軸的複雜運算,且納入不同電流下的電感變化可精確的追蹤電流命令,降低電流控制誤差量並能克服環流問題。
本研究提出一無變壓器型不斷電系統,此系統結合功因校正與不斷電之功能,前級功因校正電路採用全橋三相三線式換流器架構,後級電壓型換流器則使用全橋三相四線式架構,數位控制器皆使用微控制器Renesas RX62T 做為數位控制核心,實現本研究之控制法則。
本研究之主要貢獻如下:第一點為有效抑制環流,此系統前級與後級電路間有地線連結,當兩電路在運作時,若開關切換狀態不同,地線則有較大的環流,改變開關切換方式和加入市電與開關同步電路可有效降低環流。第二點為採用分切合整數位控制法,將交流電壓諧波與電感值變化納入控制法則推導,因此換流器可以在交流電壓有諧波成分下依舊輸出低諧波失真的電流,同時可允許寬廣的電感值變化,有效減少電感鐵芯的損失與尺寸。第三點為將分切合整控制法運用在電壓型控制模式下,同時導入重複控制,有效降低輸出電壓總諧波失真。最後經由實測結果驗證本研究所提出之理論應用於無變壓器型不斷電系統之可行性。
In most uninterruptible power supply (UPS) systems, transformers are incorpo-rated for galvanic isolation to reduce circulating current. However, the use of trans-formers increases cost and size of a system. In addition, heat generated during opera-tion lowers the stability and reduces the longevity of power components. A trans-fomerless UPS system regulates the power flow between dc link and utility and stabilizes the output voltage. Rather than the conventional abc to dq frame transformation, the division-summation(D-Ʃ) digital control is adopted instead so that the calculation process can be greatly simplified.
This research presents a transformerless UPS systems which includes a power factor corrector (PFC) and a voltage source inverter(VSI). For the PFC, a three-phase three-wire full-bridge inverter is adopted while a three-phase four-wire full-bridge inverter is adopted for the VSI. Microprocessor RX62T is incorporated in both cir-cuits to implement the proposed control law.
The main contributions of this research are summarized as follows: First, The circulation current is suppressed effectively. Large circulating current flowing through the common ground of the PFC and the VSI due to different switching states is observed. To reduce the circulating current, synchronization of: a) the switching states between the two circuits and b) the input voltage of the PFC and the output voltage of the VSI have been implemented. Secondly, both ac harmonic voltage and inductance variation are taken into account in the control law derivation of the D-Ʃ digital control, allowing a sinusoidal output current even in the presence of harmonic-contaminated grid voltage. Meanwhile, core size can be greatly reduced with the consideration of wide inductance variation. Thirdly, total harmonic distortion of the output voltage can be effectively reduced by incorporating a repetitive control in the D-Ʃ digital control based voltage tracking control.
Finally, the feasibility of the proposed control scheme has been verified by the measurements from the implemented transformerless UPS system.
參考文獻
[1] 黃仲欽,數位控制型三相不斷電系統之直流-交流功率轉換器之分析及製作,國立台灣科技大學電機工程研所碩士論文,民國90年。
[2] 張鴻鈞,不平衡負載之三相不斷電系統研製,國立台灣科技大學電機工程研所碩士論文,民國91年。
[3] J. M. Shen, H. L. Jou, and J. C. Wu, “Transformerless single-phase three-wire line-interactive uninterruptible power supply,” IET Power Electron., vol. 5, no. 9, pp. 1847-1855, Nov. 2012.
[4] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Contr. Syst. Tech., vol. 13, no. 4, pp. 559-576, Jul. 2005.
[5] Y. Cho and J. S. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 165-175, Jan. 2013.
[6] S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fast-transient, and cost-effective synchronous-frame repetitive controller for three-phase UPS in-verters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994-3005, Jun. 2012.
[7] S. Bibian and H. Jin, “High performance predictive dead-beat digital controller for dc power supplies,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 420-427, May 2002.
[8] P. Mattavelli, “An improved deadbeat control for UPS using disturbance observers,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 206-212, Feb. 2005.
[9] C. Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control,” IEEE Trans Ind. Electron., vol. 57, no. 12, pp. 4115-4125, Dec. 2010.
[10] O. Ojo and P. M. Kshirsagar, “Concise Modulation Strategies for Four-Leg Voltage Source Inverters,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 46-53, Jan. 2004.
[11] 韓鐘磊,電力急救站:UPS大蒐密,PCDIY雜誌,1999年12月份,148-154 頁。
[12] M. Beltrao de Rossiter Correa, C. B. Jacobina, E. R. C. da Silva and A. M. N. Lima, “A General PWM Strategy for Four-Switch Three-Phase Inverters,” IEEE Trans. on Power Electronics, vol. 28, no. 4, pp. 1618-1627, Nov. 2006.
[13] C. Qiao and K. M. Smedley, “Three-Phase Grid-Connected Inverters Interface for Alternative Energy Sources with Unified Constant-Frequency Integration Control, ” IEEE Industry Applications Conference, pp. 2675-2682, vol. 4, 2001.
[14] Y. Chen and K. M. Smedley, “Parallel Operation of One-Cycle Controlled Three-Phase PFC Rectifiers,” IEEE Trans. on Industrial Electronics, pp. 1689-1695, vol. 3, 2005.
[15] R. Zhang, V. H. Prasad, D. Boroyevich and F. C. Lee, ” Three-Dimensional Space Vector Modulation for Four-Leg Voltage-Source Converters,” IEEE Trans. on Power Electronics, vol. 17, no. 3, pp. 314-326, May. 2002.
[16] E. Demirkutlu and A. M. Hava ”A Scalar Resonant-Filter-Bank-Based Out-put-Voltage Control Method and a Scalar Minimum-Switching-Loss Discontin-uous PWM Method for the Four-Leg-Inverter-Based Three-phase Four-Wire Power Supply,” IEEE Tran. on Industry Applications, vol. 45, no 3, pp. 982-991, May./June 2009.
[17] 林庭世,三相三線式雙向換流器研製,國中正大學電機工程研究所碩士論文,民國99年。
[18] Gokhale, Kalyan P.; Kawamura, A.; Hoft, R.G. “Dead Beat Microprocessor Control of PWM Inverter for Sinusoidal Output Waveform Synthesis,” IEEE Trans. on Industrial Electronics, vol. IA-23, no. 5, pp. 901 – 910, Set./Oct. 1987.
[19] 楊志祥,以80196MC微控制器為基礎之換流器研製,國中正大學電機工程研究所碩士論文,民國89年。
[20] R. Zhang, D. Boroyevich, V. H. Prasad, H. Mao, F. C. Lee, and S. Dubovsky, “A Three-phase Inverter with A Neutral Leg with Space Vector Modulation,” APEC, vol. 2, pp. 857-863, Feb. 1997.
[21] M. A. Perales, M. M. Prats, R. Portillo, J. L. Mora, J. I. Leon, and L. G. Franquelo, “Three-Dimensional Space Vector Modulation in abc Coordinates for Four-Leg Voltage Source Converters,” IEEE Power Electronics Letters, vol. 1, no. 4, pp. 104-109, Dec. 2003.
[22] K. M. Smedley and C. Qiao, “Unified costant-frequency integration control of three-phase power factor corrected rectifiers, active power filters and grid-connected inverters,” U.S. Patent 6545887, Apr. 2003.
[23] 蔡宇傑,三相雙向換流器系統之控制器周邊與通訊介面研製,國中正大學電機工程研究所碩士論文,民國100年。
[24] 李昭慶,具負載阻抗估測之三相四線式換流器研製,國中正大學電機工程研究所碩士論文,民國101年。
[25] 魏敬修,直流微電網雙向換流器之建模與控制,國中正大學電機工程研究所碩士論文,民國100年。
[26] 蔡國猷,不斷電電源系統裝置指引(UPS、CVCF),建興,1997。
[27] Y. Chen and K. M. Smedley, “One-Cycle-Controlled Three-Phase Grid-Connected Inverters and Their Parallel Operation,” IEEE Trans. on Indus-trial Electronics, vol. 44, no. 2, pp. 663-671, Mar./Apr. 2008.
[28] M. P. Kazmierkowski and L. Malesani, “Current Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey,” IEEE Trans. on In-dustrial Electronics, vol. 45, no. 5, pp. 691-703, Oct. 1998.
[29] K. Galkowski, L. Grzesiak, Kummert, A. “Iterative Learning Control Method for a Single-phase Inverter with Sinusoidal Output Voltage,” IECON 2011 – 37th Annual Conference on IEEE Industrial Electronics Society, pp. 1402-1407, 2011.
[30] Heng Deng, R. Oruganti, D. Srinivasan, “Analysis and Design of iterative learn-ing control strategies for UPS inverters,” IEEE Trans. on Industrial Electronics, pp. 1739-1751, vol. 54, no. 3, June 2007.
[31] Magnetic Powder Cores Ver. 14
[32] HGTG40N60A4