研究生: |
張桂豪 KUEI HAO CHANG |
---|---|
論文名稱: |
平形矽質微流道之沸騰不穩定性與雙相流譜 Boiling instability and Two-phase flow patterns in Parallel Silicon-based Micro-channels |
指導教授: |
潘欽
Chin Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 沸騰 、不穩定性 、流譜 、微流道 |
外文關鍵詞: | boiling, instability, 流譜, microchannel |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用水力直徑為86.3μm的平行矽質微流道,研究微流道之雙相流與沸騰熱傳。透過對氣泡成長、流譜與壓降的分析,了解平形矽質微流道於小尺度所隱含之物理現象。另一方面,從實驗上發現行形微流道壓降之發散會誘發平行微流道系統不穩定現象的產生、微流道裡的回流蒸氣會影響氣泡的成長機制、壁過熱度會受微流道加熱面粗糙度的影響。
The present study investigates experimentally boiling heat transfer and two-phase flow in a micro heat sink with fifteen parallel micro-channels of 86.3μm hydraulic diameters under various mass flux and heat flux conditions. Bubble nucleation, bubble growth, two phase patterns and pressure drop are recorder and analyzed. Studying these phenomena is the key to understand the boiling process in the parallel micro-channels. In addition, it is found that the divergence pressure drop oscillation induces the instability of parallel micro-channels and the reversed flow affects the mode of bubble growth in slug flow. In addition, the wall superheat is dependent on the roughness of the heating surface parallel micro-channels.
1.D. B. Tuckerman, R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Letters., vol. EDL-2, no.5, pp. 126-129, 1981.
2.A. E. Bergles, S. G. Kandlikar, On the Nature of Critical Heat Flux in Microchannels, ASME J. Heat Transfer, vol.127, pp. 101–107, 2005.
3.Weilin Qu, Issam Mudawar, Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks, International Journal of Heat and Mass Transfer, vol.47, pp. 2045–2059, 2004.
4.H.Y. Li, P.C. Lee, F.G. Tseng, C. Pan, Two-phase flow instability of boiling in a double microchannel system at high heating powers, in: Proc. of 1st Int. Conf. in Microchannels and Minichannels, Rochester, NY, USA, 2003.
5.Y. P. Peles, L. P. Yarin, and G. Hetsroni, Steady and Unsteady Flow in a Heated Capillary, Int. J. Multiphase Flow, vol.27, pp. 577–598, 2001.
6.H.Y. Li, F.G. Tseng, Chin Pan, Bubble dynamics in microchannels. Part II: two parallel microchannels, Int. J. Heat and Mass Transfer, vol. 47, pp. 5591–5601, 2004.
7.J. E. Kennedy, G. M. Roach, Jr., M. F. Dowling, S. I. Abdel-Khalik, S. M. Ghiaasiann, S. M. Jeter, and Z. H. Quershi, The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels, ASME J. of Heat Transfer, vol. 122, pp. 118–125, 2000.
8.P. Saha and N. Zuber, Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling, Proceedings of the 5th International Heat Transfer Conference, Tokyo, Japan, pp. 175–179, 1974.
9.Y. Ding, S. Kakac and X. J. Chen, Dynamic Instabilities of Boiling Two-Phase Flow in a Signal Horizontal Channel, Experimental Thermal and Fluid Science, Vol.11, pp. 327-342,1995.
10.J. S. Maulbetsch, and P. Griffith, System-Induce Instabilities in Forced Convection Flow with Subcooled Boiling. 3th Int. Heat Transfer Conf., Chicago, IL Vol. 4, pp. 247,1066.
11.J.A. Boure, A.E. Bergles, and L.S. Tong, Review of Two-phase Flow Instability, Nuclear Engineering and Design, vol. 25, pp.165.192, 1973.
12.G. Wallis and D. I. Pomerantz, Field assisted glass-metal sealing, J. Appl. Phys. 40, pp.3348-3949, 1969.
13.E. Obermeier, Proc. 3rd Int. Symp.Wafer Bonding: Science, Technology, and Applications. Pennington, NJ: Electrochemical Society, vol. PV 95-7, p. 212, 1995.
14.Ishii, M. and Zuber, N., Thermally Induced Flow Instabilities in Two-Phase Mixtures, Proc. of 4th Int. Heat Transfer Conf., Paris, B.5.11, 1970.
15.Lian Zhang, Evelyn N. Wang, Kenneth E. Goodson, Thomas W. Kenny, Phase change phenomena in silicon microchannels, Int. J. Heat and Mass Transfer, vol. 48, pp.1572–1582, 2005.
16.R. J. Moffat, Using Uncertainty Analysis in the Planning of an Experimental, J. Fluids Engineering, Vol.107, pp165-172, 1985.
17.D. B. Tuckerman, R. F. W. Pease, Optimized convective cooling using micromachined structures, J. Electrochem. Soc. 129(3), C98 (1982).
18.H. R. Jacobs and J. P. Hartnett, Thermal engineering: emerging technologies and critical phenomena, a report in the future need for thermal engineering research. In 1991 Workshop on Future Deed for thermal engineering Research, sponsored by the National Science Foundation and the Pennsylvania State University, 1991.
19.H.Y. Wu, Ping Cheng, Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios, International Journal of Heat and Mass Transfer 46, 2003.
20.L. Ceriotti, K. Weible, N.F. de Rooij, E. Verpoorte, Rectangular channels for lab-on-a-chip applications, Microelectronic Engineering 67–68, 2003.
21.Todd M. Harms, Michael J. Kazmierczak, Frank M. Gerner, Developing convective heat transfer in deep rectangular microchannels, International Journal of Heat and Fluid Flow Volume: 20, pp. 149-157, 1999.
22.H. Y. Wu, Ping Cheng, boiling instability in parallel silicon microchannels at different heat flux, International Journal of Heat and Mass Transfer 47, 2004.