研究生: |
郭宇豪 Guo, Yu-Hao |
---|---|
論文名稱: |
子公司所在地之人工智能技術發展程度對廠商生產力之影響-以台灣資通產業為例 The Impact of AI Technology Spillover Effect on Firm Productivity:Evidence on the IC industry in Taiwan |
指導教授: |
李宜
Lee, Yi |
口試委員: |
祁玉蘭
Chyi, Yih-Luan 王信實 Wang, Shinn-Shyr |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 經濟學系 Department of Economics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 人工智能 、生產力 、外溢效果 |
外文關鍵詞: | AI, Productivity, Spillover effect |
相關次數: | 點閱:59 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討2006年至2021年台灣資通產業(電子零組件製造業、電腦、電子產品及光學製品製造業)子公司所在地之人工智能發展程度對母子公司生產力之影響,人工智能發展程度以OECD.AI所提供之人均專利數量進行衡量,而生產力則使用Levinsohn和Petrin(2003)所提出的半參數方法進行估計,並使用固定效應模型進行分析。實證結果顯示AI技術之外溢效果對電子零組件製造業廠商之生產力有顯著的影響,此外以廠商按照規模、年齡、研發支出以及前期生產力等變數進行分群,發現若廠商擁有較大的規模、較高的年齡、較多的研發支出或較高的前期生產力,AI技術外溢效果對此類廠商的生產力呈現顯著且正向之影響。根據本研究之結果,人工智能技術的外溢效果為影響廠商生產力的重要因素之一,並會在具有不同特性之廠商有所差異。
This study explores the impact of the development level of artificial intelligence in the location of subsidiaries of Taiwan's information and communication industry (electronic components manufacturing, computer, electronic products, and optical products manufacturing) on the productivity of the company from 2006 to 2021. The level of artificial intelligence development is measured by the number of patents per capita provided by OECD.AI, while productivity is estimated using the semi-parametric method proposed by Levinsohn and Petrin (2003), and analyzed using a fixed-effects model. The empirical results show that the spillover effect of AI technology has a significant impact on the productivity of electronic component manufacturing manufacturers. In addition, the manufacturers have been grouped according to variables such as size, age, R&D expenditure, and early productivity. Higher age, higher R&D expenditure or higher early-stage productivity, the spillover effect of AI technology has a significant and positive impact on the productivity of such manufacturers. According to the results of this study, the spillover effect of artificial intelligence technology is one of the important factors affecting the productivity of manufacturers, and it will vary among manufacturers with different characteristics.
1.Agrawal, A., Gans, J., Goldfarb, A., 2017. What to expect from artificial intelligence. MIT Sloan Manag. Rev. 58 (3), 23–27.
2.Alderucci, D., Branstetter, L., Hovy, E., Runge, A., Zolas, N., 2020. Quantifying the impact of AI on productivity and labor demand: evidence from U.S. census
microdata. In: Paper presented at the Allied Social Science Associations ASSA 2020 Annual Meeting.
3.Aleksandra Parteka & Aleksandra Kordalska, 2022. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," GUT FME Working Paper Series A 67, Faculty of Management and Economics, Gdansk University of Technology, revised Sep 2022.
4.Ballestar, M.T., Díaz-Chao, A., ́ Sainz, J., Torrent-Sellens, J., 2020. Knowledge, robots and productivity in SMEs: explaining the second digital wave. J. Bus. Res. 108, 119–131.
5.Bartelsman, Eric J., Jonathan E. Haskel, and Ralf Martin. 2008. “Distance to Which Frontier? Evidence on Productivity Convergence from International FirmLevel Data” Centre for Economic Policy Research Discussion Paper 7032.
6.Bloom, Nicholas, Mark Schankerman, and John Van Reenen. 2007. “Identifying Technology Spillovers and Product Market Rivalry.” National Bureau of Economic Research Working Paper 13060.
7.Brynjolfsson, E., Rock, D., Syverson, C., 2019. Artificial intelligence and the productivity paradox: a clash of expectations and statistics. In: Agrawal, A., Gans, J., Goldfarb, A.(Eds.), The Economics of Artificial Intelligence. University of Chicago Press, Chicago, U.S.
8.Carol Corrado、Jonathan Haskel, Cecilia Jona-Lasinio, 2021. Artificial intelligence and productivity: an intangible assets approach. Oxford Review of Economic Policy, Volume 37, Issue 3, Autumn 2021, Pages 435–458,
9.Chad Syverson, 2011. What Determines Productivity? Journal of Economic Literature 2011, 49:2, 326–365
10.Cockburn, I., Henderson, R., Stern, S., 2019. The impact of artificial intelligence on innovation: an exploratory analysis. In: Agrawal, A., Gans, J., Goldbarb, A. (Eds.),The Economics of Artificial Intelligence: An Agenda. University of Chicago Press and NBER.
11.Crespi, Gustavo, Chiara Criscuolo, Jonathan E. Haskel, and Matthew Slaughter. 2008. “Productivity Growth, Knowledge Flows, and Spillovers.” National Bureau of Economic Research Working Paper 13959
12.Gal, P., Nicoletti, G., Renault, T., Sorbe, S., Timiliotis, C., 2019. Digitalisation and productivity: in search of the holy grail – firm-level empirical evidence from EU countries. Int. Prod. Monit. 37, 39–71.
13.Graetz, Georg and Guy Michaels (2015) “Robots at Work,” Centre for Economic Performance Discussion Paper No. 1335.
14.Jovanovic, B., Rousseau, P.L., 2005. General purpose technologies. In: Aghion, Philippe, Durlauf, Steven N. (Eds.), Handbook of Economic Growth, Volume 1B. Elsevier B.V, pp. 1181–1224.
15.Levinsohn, J., & Petrin, A. (2003). Estimating production functions using inputs to control for unobservables. The review of economic studies, 70(2), 317-341.
16.Olley, G. S. , and Pakes, A. (1996). The dynamics of productivity in the telecommunications equipment industry. Econometrica 64: 1263–1297.
17.Webb, M., Short, N., Bloom, N., Lerner, J., 2018. Some Facts on High-tech Patenting. NBER Working Paper, No. 24793.
18.Yang, Chih-Hai 2022. How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan. Research Policy, Elsevier, vol. 51(6).