簡易檢索 / 詳目顯示

研究生: 郭邦賢
Kuo, Pan-Hsien
論文名稱: Structural insights into TDP-43 in nucleic acid binding and domain interactions
TDP-43 與核酸結合及特殊區域間之相互作用的結構研究
指導教授: 袁小琀
Yuan, Hanna S.
呂平江
Lyu, Ping-Chiang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 69
中文關鍵詞: 結構核酸纖維囊腫神經退化性疾病纖維
外文關鍵詞: TDP-43, FTLD, ALS, cystic fibrosis, fiber
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TDP-43為一可引起疾病之蛋白質,TDP-43與含有UG-rich之RNA結合的功能,與纖維囊腫(cystic fibrosis)有關。TDP-43也會形成聚合體,而與額顳葉退化型失智症(frontotemporal lobar degeneration, FTLD)及肌萎縮性脊髓側索硬化症(漸凍人) (amyotrophic lateral sclerosis, ALS)等神經退化性疾病有關。瞭解TDP-43如何與DNA和RNA結合,如何形成聚合體,是瞭解此蛋白質與疾病間關係的關鍵。在此論文中,我們發現含有兩個RRM區域的TDP-43為一之二聚物,RRM1和RRM2區域都可以與核酸分子結合。我們測定了位於TDP-43 C端之RRM2結構域與單股DNA之複合晶體結構,其解析度為1.65 Å。蛋白質結構說明了為何TDP-43傾向與含有TG之DNA序列或含有UG之RNA序列結合。除此之外,不同於典型之RRM結構,TDP-43 之RRM2擁有一額外的b-strand (b4)。我們經由circular dichroism及dynamic light scattering實驗發現,伴隨著溫度上升RRM2可形成含有b-strand結構的高分子量的聚合體。然而,單點突變的實驗結果並不支持額外的□4是如結構所示扮演蛋白質與蛋白質交互作用重要角色的這個推論。另一方面,RRM2的b3以及b5會形成直徑約5-10nm的纖維結構,這個結果顯示b3及b5可能才是參與高分子量的聚合體的形成主因。我們推論RRM2區域的結構會經由加溫或不正常的斷裂而鬆散開來形成聚合體。根據這些結果除了可以了解TDP-43與核酸結合的特性及RRM2自我結合的模式,也可以提供一個分子模型而了解TDP-43在纖維囊腫及神經退化性疾病中所扮演的角色。


    TDP-43 is a pathogenic protein: its normal function in binding to UG-rich RNA is related to cystic fibrosis, and inclusion of its C-terminal fragments in brain cells is directly linked to neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). To understand the role of TDP-43 in these human diseases, it is important to reveal how TDP-43 binds DNA and RNA, and how it forms inclusions. Here our biochemical data showed that TDP-43 is a dimeric protein with two RRM domains, both involved in DNA and RNA binding. We have determined the crystal structure of the C-terminal RRM2 domain of TDP-43 in complex with a single-stranded DNA at a resolution of 1.65 Å. The crystal structure reveals the basis of TDP-43’s TG/UG preference in nucleic acids binding. It also reveals that RRM2 domain has an atypical RRM fold with an additional b-strand (b4). We also found that RRM2 domain formed high-order assembly with retained b-strand structure when the temperature was increased, as monitored by circular dichroism and dynamic light scattering. However, the mutagenesis studies did not support that b4 participated in the protein-protein interactions as shown in the crystal packing environment. On the other hand, b3 and b5 of RRM2 domain could form fibrils with a width of 5-10 nm as shown in electron microscopy, suggesting that these two b-strands may be involved in forming high-order assembly. We suggest that the RRM2 domain of TDP-43 can be unfolded and the exposed b-strands are then aggregated into high-order assembly to initiate protein inclusions. These studies thus characterize the recognition between TDP-43 and nucleic acids and the possible mode of TDP-43 self association, and provide molecular models for understanding the role of TDP-43 in cystic fibrosis and the neurodegenerative diseases related to TDP-43 proteinopathy.

    中文摘要 1 Summary 2 1. Introduction 3 1.1 Domain structure of TDP-43 3 1.1.1 TDP-43 is a DNA-binding protein functioning as a transcriptional factor 4 1.1.1.1 TDP-43 represses the transcription of HIV-1 gene 4 1.1.1.2 TDP-43 represses the transcription of SP-10 gene 5 1.1.1.3 TDP-43 regulates the expression of human cyclin- dependent kinase 6 (Cdk6) 6 1.1.2 TDP-43 is a RNA-binding protein involved in splicing and translation regulation 6 1.1.2.1 TDP-43 is a splicing factor of CFTR gene 6 1.1.2.2 TDP-43 is a splicing factor of apoA-II gene 7 1.1.2.3 TDP-43 is involved in regulating the stability of mRNA 8 1.1.2.4 TDP-43 is a neuronal activity-responsive factor 9 1.1.3 TDP-43 is involved in neurodegenerative proteinopathy 9 1.1.3.1 Identification of TDP-43 as a major disease protein in FTLD and ALS 9 1.1.3.1.1 Frontotemporal Lobar Degeneration (FTLD) 11 1.1.3.1.2 Amyotrophic Lateral Sclerosis (ALS) 11 1.1.3.2 The pathobiology of TDP-43 13 1.1.3.3 TDP-43 inclusions comprise granules and filaments 14 2. The specific aims of the study 14 3. Material and Methods 15 3.1 Protein expression and purification 15 3.2 TDP-43 expresses in 293T cells 16 3.3 Filter binding assay 17 3.4 Circular dichroism 17 3.5 Dynamics light scattering (DLS) 18 3.6 Crystallization, structural determination and refinement 18 3.7 Fibril formation 19 3.8 Site-directed mutagenesis 19 3.9 Electron microscopy 20 4. Results 20 4.1 TDP43s is a dimer with four RRM domains 20 4.2 TDP-43s binds ssDNA and dsDNA with preference for TG- rich sequences 21 4.3 TDP-43s prefers to bind UG-rich RNA 22 4.4 Overall crystal structure of RRM2-DNA complex 23 4.5 Specific interactions between TDP-43 and TG sequence 25 4.6 RRM2 domain is highly thermal stable 26 4.7 RRM2 domain forms a high-order assembly in solution 26 4.8 b2 and b1 in RRM2 are likely not involved in high- order assembly formation 27 4.9. Two b-strands of RRM2 can form fibril-like structure 28 5. Discussion 29 5.1 Both RRM1 and RRM2 of TDP-43 are involved in site- specific DNA/RNA interactions 29 5.2 TDP-43 RRM2 domain has a unique atypical RRM fold 30 5.3 A new model of how TDP-43 forms aggregations 31 6. Acknowledgements 32

    1. Buratti, E. and Baralle, F.E. (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci, 13, 867-878.
    2. Buratti, E. and Baralle, F.E. (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J Biol Chem, 276, 36337-36343.
    3. Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M. et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314, 130-133.
    4. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y. et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun, 351, 602-611.
    5. Shamoo, Y., Abdul-Manan, N. and Williams, K.R. (1995) Multiple RNA binding domains (RBDs) just don't add up. Nucleic Acids Res, 23, 725-728.
    6. Dreyfuss, G., Matunis, M.J., Pinol-Roma, S. and Burd, C.G. (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 62, 289-321.
    7. Maris, C., Dominguez, C. and Allain, F.H. (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 272, 2118-2131.
    8. Burd, C.G. and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science, 265, 615-621.
    9. Adam, S.A., Nakagawa, T., Swanson, M.S., Woodruff, T.K. and Dreyfuss, G. (1986) mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol Cell Biol, 6, 2932-2943.
    10. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A. et al. (2001) The sequence of the human genome. Science, 291, 1304-1351.
    11. Kenan, D.J., Query, C.C. and Keene, J.D. (1991) RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci, 16, 214-220.
    12. Clery, A., Blatter, M. and Allain, F.H. (2008) RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol, 18, 290-298.
    13. Wittekind, M., Gorlach, M., Friedrichs, M., Dreyfuss, G. and Mueller, L. (1992) 1H, 13C, and 15N NMR assignments and global folding pattern of the RNA-binding domain of the human hnRNP C proteins. Biochemistry, 31, 6254-6265.
    14. Nagai, K., Oubridge, C., Jessen, T.H., Li, J. and Evans, P.R. (1990) Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature, 348, 515-520.
    15. Garrett, D.S., Lodi, P.J., Shamoo, Y., Williams, K.R., Clore, G.M. and Gronenborn, A.M. (1994) Determination of the secondary structure and folding topology of an RNA binding domain of mammalian hnRNP A1 protein using three-dimensional heteronuclear magnetic resonance spectroscopy. Biochemistry, 33, 2852-2858.
    16. Jessen, T.H., Oubridge, C., Teo, C.H., Pritchard, C. and Nagai, K. (1991) Identification of molecular contacts between the U1 A small nuclear ribonucleoprotein and U1 RNA. EMBO J, 10, 3447-3456.
    17. Lutz-Freyermuth, C., Query, C.C. and Keene, J.D. (1990) Quantitative determination that one of two potential RNA-binding domains of the A protein component of the U1 small nuclear ribonucleoprotein complex binds with high affinity to stem-loop II of U1 RNA. Proc Natl Acad Sci U S A, 87, 6393-6397.
    18. Deo, R.C., Bonanno, J.B., Sonenberg, N. and Burley, S.K. (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell, 98, 835-845.
    19. Inoue, M., Muto, Y., Sakamoto, H. and Yokoyama, S. (2000) NMR studies on functional structures of the AU-rich element-binding domains of Hu antigen C. Nucleic Acids Res, 28, 1743-1750.
    20. Wang, X. and Tanaka Hall, T.M. (2001) Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol, 8, 141-145.
    21. Crowder, S.M., Kanaar, R., Rio, D.C. and Alber, T. (1999) Absence of interdomain contacts in the crystal structure of the RNA recognition motifs of Sex-lethal. Proc Natl Acad Sci U S A, 96, 4892-4897.
    22. Handa, N., Nureki, O., Kurimoto, K., Kim, I., Sakamoto, H., Shimura, Y., Muto, Y. and Yokoyama, S. (1999) Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature, 398, 579-585.
    23. Ou, S.H., Wu, F., Harrich, D., Garcia-Martinez, L.F. and Gaynor, R.B. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol, 69, 3584-3596.
    24. Buratti, E., Dork, T., Zuccato, E., Pagani, F., Romano, M. and Baralle, F.E. (2001) Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J, 20, 1774-1784.
    25. Buratti, E., Brindisi, A., Pagani, F. and Baralle, F.E. (2004) Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am J Hum Genet, 74, 1322-1325.
    26. Buratti, E., Brindisi, A., Giombi, M., Tisminetzky, S., Ayala, Y.M. and Baralle, F.E. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem, 280, 37572-37584.
    27. Ayala, Y.M., Pantano, S., D'Ambrogio, A., Buratti, E., Brindisi, A., Marchetti, C., Romano, M. and Baralle, F.E. (2005) Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol, 348, 575-588.
    28. Wang, H.Y., Wang, I.F., Bose, J. and Shen, C.K. (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics, 83, 130-139.
    29. Abhyankar, M.M., Urekar, C. and Reddi, P.P. (2007) A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J Biol Chem, 282, 36143-36154.
    30. Forman, M.S., Trojanowski, J.Q. and Lee, V.M. (2007) TDP-43: a novel neurodegenerative proteinopathy. Curr Opin Neurobiol, 17, 548-555.
    31. Ayala, Y.M., Misteli, T. and Baralle, F.E. (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc Natl Acad Sci U S A, 105, 3785-3789.
    32. Welsh, M.J. and Smith, A.E. (1995) Cystic fibrosis. Sci Am, 273, 52-59.
    33. Dork, T., Dworniczak, B., Aulehla-Scholz, C., Wieczorek, D., Bohm, I., Mayerova, A., Seydewitz, H.H., Nieschlag, E., Meschede, D., Horst, J. et al. (1997) Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet, 100, 365-377.
    34. Chillon, M., Casals, T., Mercier, B., Bassas, L., Lissens, W., Silber, S., Romey, M.C., Ruiz-Romero, J., Verlingue, C., Claustres, M. et al. (1995) Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med, 332, 1475-1480.
    35. Zhang, Y.J., Xu, Y.F., Cook, C., Gendron, T.F., Roettges, P., Link, C.D., Lin, W.L., Tong, J., Castanedes-Casey, M., Ash, P. et al. (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A, 106, 7607-7612.
    36. Niksic, M., Romano, M., Buratti, E., Pagani, F. and Baralle, F.E. (1999) Functional analysis of cis-acting elements regulating the alternative splicing of human CFTR exon 9. Hum Mol Genet, 8, 2339-2349.
    37. Trojanowski, J.Q., Duff, K., Fillit, H., Koroshetz, W., Kuret, J., Murphy, D. and Refolo, L. (2008) New directions for frontotemporal dementia drug discovery. Alzheimers Dement, 4, 89-93.
    38. Ayala, Y.M., Pagani, F. and Baralle, F.E. (2006) TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Lett, 580, 1339-1344.
    39. Brousseau, M.E., Millar, J.S., Diffenderfer, M.R., Nartsupha, C., Asztalos, B.F., Wolfe, M.L., Mancuso, J.P., Digenio, A.G., Rader, D.J. and Schaefer, E.J. (2009) Effects of cholesteryl ester transfer protein inhibition on apolipoprotein A-II-containing HDL subspecies and apolipoprotein A-II metabolism. J Lipid Res, 50, 1456-1462.
    40. Mercado, P.A., Ayala, Y.M., Romano, M., Buratti, E. and Baralle, F.E. (2005) Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res, 33, 6000-6010.
    41. Arrisi-Mercado, P., Romano, M., Muro, A.F. and Baralle, F.E. (2004) An exonic splicing enhancer offsets the atypical GU-rich 3' splice site of human apolipoprotein A-II exon 3. J Biol Chem, 279, 39331-39339.
    42. Lee, M.K., Xu, Z., Wong, P.C. and Cleveland, D.W. (1993) Neurofilaments are obligate heteropolymers in vivo. J Cell Biol, 122, 1337-1350.
    43. Ching, G.Y. and Liem, R.K. (1993) Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol, 122, 1323-1335.
    44. Nixon, R.A. and Shea, T.B. (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton, 22, 81-91.
    45. Menzies, F.M., Grierson, A.J., Cookson, M.R., Heath, P.R., Tomkins, J., Figlewicz, D.A., Ince, P.G. and Shaw, P.J. (2002) Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J Neurochem, 82, 1118-1128.
    46. Wong, N.K., He, B.P. and Strong, M.J. (2000) Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59, 972-982.
    47. Bergeron, C., Beric-Maskarel, K., Muntasser, S., Weyer, L., Somerville, M.J. and Percy, M.E. (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53, 221-230.
    48. Ge, W.W., Wen, W., Strong, W., Leystra-Lantz, C. and Strong, M.J. (2005) Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280, 118-124.
    49. Ge, W.W., Volkening, K., Leystra-Lantz, C., Jaffe, H. and Strong, M.J. (2007) 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR. Mol Cell Neurosci, 34, 80-87.
    50. Strong, M.J., Volkening, K., Hammond, R., Yang, W., Strong, W., Leystra-Lantz, C. and Shoesmith, C. (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci, 35, 320-327.
    51. Wang, I.F., Wu, L.S., Chang, H.Y. and Shen, C.K. (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem, 105, 797-806.
    52. Snowden, J.S., Neary, D. and Mann, D.M. (2002) Frontotemporal dementia. Br J Psychiatry, 180, 140-143.
    53. Kumar-Singh, S. and Van Broeckhoven, C. (2007) Frontotemporal lobar degeneration: current concepts in the light of recent advances. Brain Pathol, 17, 104-114.
    54. Pasinelli, P. and Brown, R.H. (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci, 7, 710-723.
    55. Cairns, N.J., Bigio, E.H., Mackenzie, I.R., Neumann, M., Lee, V.M., Hatanpaa, K.J., White, C.L., 3rd, Schneider, J.A., Grinberg, L.T., Halliday, G. et al. (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol, 114, 5-22.
    56. Sampathu, D.M., Neumann, M., Kwong, L.K., Chou, T.T., Micsenyi, M., Truax, A., Bruce, J., Grossman, M., Trojanowski, J.Q. and Lee, V.M. (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. Am J Pathol, 169, 1343-1352.
    57. Mackenzie, I.R., Baborie, A., Pickering-Brown, S., Du Plessis, D., Jaros, E., Perry, R.H., Neary, D., Snowden, J.S. and Mann, D.M. (2006) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathol, 112, 539-549.
    58. Corsetti, V., Amadoro, G., Gentile, A., Capsoni, S., Ciotti, M.T., Cencioni, M.T., Atlante, A., Canu, N., Rohn, T.T., Cattaneo, A. et al. (2008) Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer's disease models. Mol Cell Neurosci, 38, 381-392.
    59. Isaacs, A.M., Powell, C., Webb, T.E., Linehan, J.M., Collinge, J. and Brandner, S. (2008) Lack of TAR-DNA binding protein-43 (TDP-43) pathology in human prion diseases. Neuropathol Appl Neurobiol, 34, 446-456.
    60. Neary, D., Snowden, J. and Mann, D. (2005) Frontotemporal dementia. Lancet Neurol, 4, 771-780.
    61. Shaw, C.E., al-Chalabi, A. and Leigh, N. (2001) Progress in the pathogenesis of amyotrophic lateral sclerosis. Curr Neurol Neurosci Rep, 1, 69-76.
    62. Fujita, Y., Mizuno, Y., Takatama, M. and Okamoto, K. (2008) Anterior horn cells with abnormal TDP-43 immunoreactivities show fragmentation of the Golgi apparatus in ALS. J Neurol Sci, 269, 30-34.
    63. Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E. et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319, 1668-1672.
    64. Shaw, C.E., Enayat, Z.E., Powell, J.F., Anderson, V.E., Radunovic, A., al-Sarraj, S. and Leigh, P.N. (1997) Familial amyotrophic lateral sclerosis. Molecular pathology of a patient with a SOD1 mutation. Neurology, 49, 1612-1616.
    65. Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J.P., Deng, H.X. et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59-62.
    66. Tan, C.F., Eguchi, H., Tagawa, A., Onodera, O., Iwasaki, T., Tsujino, A., Nishizawa, M., Kakita, A. and Takahashi, H. (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol, 113, 535-542.
    67. Mackenzie, I.R., Bigio, E.H., Ince, P.G., Geser, F., Neumann, M., Cairns, N.J., Kwong, L.K., Forman, M.S., Ravits, J., Stewart, H. et al. (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol, 61, 427-434.
    68. Lagier-Tourenne, C. and Cleveland, D.W. (2009) Rethinking ALS: the FUS about TDP-43. Cell, 136, 1001-1004.
    69. Ticozzi, N., Leclerc, A.L., van Blitterswijk, M., Keagle, P., McKenna-Yasek, D.M., Sapp, P.C., Silani, V., Wills, A.M., Brown, R.H., Jr. and Landers, J.E. (2009) Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol Aging.
    70. Hasegawa, M., Arai, T., Nonaka, T., Kametani, F., Yoshida, M., Hashizume, Y., Beach, T.G., Buratti, E., Baralle, F., Morita, M. et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol, 64, 60-70.
    71. Thorpe, J.R., Tang, H., Atherton, J. and Cairns, N.J. (2008) Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J Neural Transm, 115, 1661-1671.
    72. Chen, A.K., Lin, R.Y., Hsieh, E.Z., Tu, P.H., Chen, R.P., Liao, T.Y., Chen, W., Wang, C.H. and Huang, J.J. (2010) Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J Am Chem Soc, 132, 1186-1187.
    73. Neumann, M., Igaz, L.M., Kwong, L.K., Nakashima-Yasuda, H., Kolb, S.J., Dreyfuss, G., Kretzschmar, H.A., Trojanowski, J.Q. and Lee, V.M. (2007) Absence of heterogeneous nuclear ribonucleoproteins and survival motor neuron protein in TDP-43 positive inclusions in frontotemporal lobar degeneration. Acta Neuropathol, 113, 543-548.
    74. Ahmed, Z., Mackenzie, I.R., Hutton, M.L. and Dickson, D.W. (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation, 4, 7.
    75. Otwinowski, Z. and Minor, W. (1993) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326.
    76. Buratti, E. and Baralle, F.E. (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem., 276, 36337-36343.
    77. Maris, C., Dominguez, C. and Allain, F.H.-T. (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS Journal, 272, 2118-2131.
    78. Ding, J., Hayashi, M.K., Zhang, Y., Manche, L., Krainer, A.R. and Xu, R.M. (1999) Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev, 13, 1102-1115.
    79. Oubridge, C., Ito, N., Evans, P.R., Teo, C.H. and Nagai, K. (1994) Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature, 372, 432-438.
    80. Crichlow, G.V., Zhou, H., Hsiao, H.H., Frederick, K.B., Debrosse, M., Yang, Y., Folta-Stogniew, E.J., Chung, H.J., Fan, C., De la Cruz, E.M. et al. (2008) Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. EMBO J, 27, 277-289.
    81. Rohn, T.T. (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer's disease. Brain Res, 1228, 189-198.
    82. Zhang, Y.J., Xu, Y.F., Dickey, C.A., Buratti, E., Baralle, F., Bailey, R., Pickering-Brown, S., Dickson, D. and Petrucelli, L. (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci, 27, 10530-10534.
    83. Igaz, L.M., Kwong, L.K., Chen-Plotkin, A., Winton, M.J., Unger, T.L., Xu, Y., Neumann, M., Trojanowski, J.Q. and Lee, V.M. (2009) Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem, 284, 8516-8524.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE