研究生: |
黃星輔 Huang, Xing-Fu. |
---|---|
論文名稱: |
在水相利用表面含4-硝基苯乙炔修飾的氧化亞銅粒子進行光催化聚合反應 Aqueous Phase Photocatalyzed Dimethylacrylamide Polymerization Using 4-Nitrophenylacetylene-Modified Cu2O Crystals |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
彭之皓
Peng, Chi-How 陳俊太 Chen, Jiun-Tai |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 氧化亞銅 、氮,氮-二甲基丙烯酰胺 、高分子 |
外文關鍵詞: | Cu2O, N,N-dimethylacrylamide, polymerization |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室在先前的研究中發現氧化亞銅奈米粒子表面經由4-硝基苯乙炔修飾過後,能有效促進氧化亞銅正立方體、八面體以及菱形十二面體對降解甲基橙染料的活性,並利用密度泛函理論計算得出氧化亞銅經過修飾之後能夠產生有效幫助電子轉移,以利於後續電子電洞分離,並讓電洞與水產生氫氧自由基分解甲基橙。
而在本次實驗中,將修飾過的氧化亞銅粒子應用於水相自由基聚合反應中,在共同引發劑的幫助下,修飾過的氧化亞銅粒子能夠使N,N-二甲基丙烯酰胺在六十分鐘內達到百分之九十一的轉換率。在後續的測試中,利用氧化亞銅粒子作為自由基起始劑的作法能夠使得此自由基促進的聚合反應直接在空氣環境下進行並在一小時內達到百分之六十四的轉換率。後續並利用1,4-苯醌以及草酸鈉分別作為電子和電洞捕捉劑,以確認能夠影響反應機制的電子載體種類。
Previously, Cu2O cubes, octahedra, and rhombic dodecahedra have been shown to exhibit greatly enhanced methyl orange photodegradation activities through surface functionalization with 4-nitrophenylacetylene (4-NA). Density functional theory (DFT) calculations reveal emergence of a narrow bands within the band gap of Cu2O to facilitate electron transfer through 4-NA and this likely gives better charge separation. In this work, 4-NA-modified Cu2O particles were applied as photocatalysts for free-radical polymerization reactions in aqueous phase via photoactivating coinitiator. The excellent photocatalytic performance of modified Cu2O catalyst was confirmed by a high N,N-dimethylacrylamide monomer conversion of 91% in thirty minutes. The polymerization reaction was also carried out in ambient air condition, and the conversion reached 64% in one hour. Doing so can simplify the reaction process substantially. Furthermore, 1,4-benzoquinone and sodium oxalate were used as electron and hole scavengers to reveal the major charge carrier to support the proposed reaction mechanism.
1. Huang, M. H.; Lin, P.-H. Shape‐Controlled Synthesis of Polyhedral Nanocrystals and Their Facet‐Dependent Properties. Adv. Funct. Mater. 2012, 22 (1), 14-24.
2. Huang, M. H.; Rej, S.; Hsu, S.-C. Facet-Dependent Properties of Polyhedral Nanocrystals. Chem. Commun. 2014, 50 (14), 1634-1644.
3. Tan, C.-S.; Hsu, S.-C.; Ke, W.-H.; Chen, L.-J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15 (3), 2155-2160.
4. Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Zhang, H.; Wang, C. Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic Co Oxidation Activity. J. Am. Chem. Soc. 2010, 132 (48), 17084-17087.
5. Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Crystal‐Plane‐Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals. Angew. Chem. Int. Ed. 2011, 123 (51), 12502-12506.
6. Hua, Q.; Cao, T.; Gu, X. K.; Lu, J.; Jiang, Z.; Pan, X.; Luo, L.; Li, W. X.; Huang, W. Crystal‐Plane‐Controlled Selectivity of Cu2O Catalysts in Propylene Oxidation with Molecular Oxygen. Angew. Chem. Int. Ed. 2014, 126 (19), 4956-4961.
7. Pastor, E.; Pesci, F. M.; Reynal, A.; Handoko, A. D.; Guo, M.; An, X.; Cowan, A. J.; Klug, D. R.; Durrant, J. R.; Tang, J. Interfacial Charge Separation in Cu2O /RuOX as a Visible Light Driven CO2 Reduction Catalyst. Phys. Chem. Chem. Phys. 2014, 16 (13), 5922-5926.
8. Schreier, M.; Gao, P.; Mayer, M. T.; Luo, J.; Moehl, T.; Nazeeruddin, M. K.; Tilley, S. D.; Gratzel, M. Efficient and Selective Carbon Dioxide Reduction on Low Cost Protected Cu2O Photocathodes Using a Molecular Catalyst. Energy Environ. Sci. 2015, 8 (3), 855-861.
9. Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6 (15), 8704-8709.
10. Chanda, K.; Rej, S.; Huang, M. H. Facet‐Dependent Catalytic Activity of Cu2O Nanocrystals in the One‐Pot Synthesis of 1, 2, 3‐Triazoles by Multicomponent Click Reactions. Chem. Eur. J. 2013, 19 (47), 16036-16043.
11. Chanda, K.; Rej, S.; Huang, M. H. Investigation of Facet Effects on the Catalytic Activity of Cu2O Nanocrystals for Efficient Regioselective Synthesis of 3,5-Disubstituted Isoxazoles. Nanoscale 2013, 5 (24), 12494-12501.
12. Liu, X.-W. Selective Growth of Au Nanoparticles on (111) Facets of Cu2O Microcrystals with an Enhanced Electrocatalytic Property. Langmuir 2011, 27 (15), 9100-9104.
13. Kuo, C.-H.; Yang, Y.-C.; Gwo, S.; Huang, M. H. Facet-Dependent and Au Nanocrystal-Enhanced Electrical and Photocatalytic Properties of Au‒Cu2O Core‒Shell Heterostructures. J. Am. Chem. Soc. 2011, 133 (4), 1052-1057.
14. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134 (2), 1261-1267.
15. Liang, T.-Y.; Chan, S.-J.; Patra, A. S.; Hsieh, P.-L.; Chen, Y.-A.; Ma, H.-H.; Huang, M.H. Inactive Cu2O Cubes Become Highly Photocatalytically Active with Ag2S Deposition. ACS Appl. Mater. Interfaces 2021, 13 (9), 11515-11523.
16. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties. Adv. Funct. Mater. 2007, 17 (15), 2766-2771.
17. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, Self-Assembly, Disassembly, and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with {001} or {110} Planes. J. Am. Chem. Soc. 2010, 132 (17), 6131-6144.
18. Liu, Z. G.; Sun, Y. F.; Chen, W. K.; Kong, Y.; Jin, Z.; Chen, X.; Zheng, X.; Liu, J. H.; Huang, X. J.; Yu, S. H. Facet‐Dependent Stripping Behavior of Cu2O Microcrystals toward Lead Ions: A Rational Design for the Determination of Lead Ions. Small 2015, 11 (21), 2493-2498.
19. Wang, J.; Cui, F.; Chu, S.; Jin, X.; Pu, J.; Wang, Z. In Situ Growth of Noble-Metal Nanoparticles on Cu2O Nanocubes for Surface-Enhanced Raman Scattering Detection. ChemPlusChem 2014, 79 (5), 684-689.
20. You, T.; Jiang, L.; Yin, P.; Shang, Y.; Zhang, D.; Guo, L.; Yang, S. Direct Observation of P, P’‐Dimercaptoazobenzene Produced from P‐Aminothiophenol and P‐Nitrothiophenol on Cu2O Nanoparticles by Surface‐Enhanced Raman Spectroscopy. J Raman Spectrosc. 2014, 45 (1), 7-14.
21. Morales‐Guio, C. G.; Liardet, L.; Mayer, M. T.; Tilley, S. D.; Gratzel, M.; Hu, X. Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu2O Coated with Earth‐Abundant Hydrogen Evolution Catalysts. Angew. Chem. Int. Ed. 2015, 127 (2), 674-677.
22. Hung, L. I.; Tsung, C. K.; Huang, W.; Yang, P. Room‐Temperature Formation of Hollow Cu2O Nanoparticles. Adv. Mater. 2010, 22 (17), 1910-1914.
23. Park, J. C.; Kim, J.; Kwon, H.; Song, H. Gram‐Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium‐Ion Battery Anode Materials. Adv. Mater. 2009, 21 (7), 803-807.
24. Chen, K.; Song, S.; Xue, D. Faceted Cu2O Structures with Enhanced Li-Ion Battery Anode Performances. CrystEngComm 2015, 17 (10), 2110-2117.
25. Chu, C.-Y.; Huang, M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5 (29), 15116-15123.
26. Yuan, G. Z.; Hsia, C. F.; Lin, Z. W.; Chiang, C.; Chiang, Y. W.; Huang, M. H. Highly Facet‐Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au‐Decorated Cu2O Heterostructures. Chem.‒Eur. J. 2016, 22 (35), 12548-12556.
27. Hsieh, M.-S.; Su, H.-J.; Hsieh, P.-L.; Chiang, Y.-W.; Huang, M. H. Synthesis of Ag3PO4 Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity, and Electrical Conductivity Examinations. ACS Appl. Mater. Interfaces 2017, 9 (44), 39086-39093.
28. Naresh, G.; Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J. Facet-Dependent Photocatalytic Behaviors of ZnS Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2018, 11 (3), 3582-3589.
29. Wu, S. C.; Tan, C. S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2O‒ZnO Heterostructures. Adv. Funct. Mater. 2017, 27 (9), 1604635.
30. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related
Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.
31. Shanmugam, M.; Sagadevan, A.; Charpe, V. P.; Pampana, V. K. K.; Hwang, K. C. Cu2O Nanocrystals‐Catalyzed Photoredox Sonogashira Coupling of Terminal Alkynes and Arylhalides Enhanced by CO2. ChemSusChem 2020, 13 (2), 287-292.
32. Zhang, W.; Ren, B.; Jiang, Y.; Hu, Z. Carboxymethylpullulan Promoted Cu2O-Catalyzed Huisgen-Click Reaction. RSC Adv. 2015, 5 (16), 12043-12047.
33. Chen, T.-N.; Kao, J.-C.; Zhong, X.-Y.; Chan, S.-J.; Patra, A. S.; Lo, Y.-C.; Huang, M. H. Facet-Specific Photocatalytic Activity Enhancement of Cu2O Polyhedra Functionalized with 4-Ethynylanaline Resulting from Band Structure Tuning. ACS Cent. Sci. 2020, 6 (6), 984-994.
34. Patra, A. S.; Kao, J.-C.; Chan, S.-J.; Chou, P.-J.; Chou, J.-P.; Lo, Y.-C.; Huang, M. H. Photocatalytic Activity Enhancement of Cu2O Cubes Functionalized with 2-Ethynyl-6-Methoxynaphthalene through Band Structure Modulation. J. Mater. Chem. C 2022, 10, 3980-3989.
35. Chan, S.-J., Kao, J.-C., Chou, P.-J., Lo, Y.-C., Chou, J.-P., Huang, M. H. 4-Nitrophenylacetylene-Modified Cu2O Cubes and Rhombic Dodecahedra Showing Superior Photocatalytic Activity through Surface Band Structure Modulation. J. Mater. Chem. C. 2022, 10, 8422-8431.
36. Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P. M.; Lou, J. In Situ Synthesis of Lead-free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4 (3), 464–471.
37. Riad, K. B.; Arnold, A. A.; Claverie, J. P.; Hoa, S. V.; Wood-Adams, P. M. Photopolymerization Using Metal Oxide Semiconducting Nanoparticles for Epoxy-based Coatings and Patterned Films. ACS Appl. Nano Mater. 2020, 3 (3), 2875–2880.
38. Zhang, J.; Huang, Y.; Jin, X.; Nazartchouk, A.; Liu, M.; Tong, X.; Jiang, Y.; Ni, L.; Sun, S.; Sang, Y.; Liu, H.; Razzari, L.; Vetrone, F.; Claverie, J. Plasmon Enhanced Upconverting Core@Triple-Shell Nanoparticles as Recyclable Panchromatic Initiators (Blue to Infrared) for Radical Polymerization. Nanoscale Horiz. 2019, 4 (4), 907–917.
39. Mcclelland, K. P.; Clemons, T. D.; Stupp, S. I.; Weiss, E. A. Semiconductor Quantum Dots Are Efficient and Recyclable Photocatalysts for Aqueous PET-RAFT Polymerization. ACS Macro Lett. 2020, 9 (1), 7–13.
40. Huang, Y.; Zhu, Y.; Egap, E. Semiconductor Quantum Dots as Photocatalysts for Controlled Light-Mediated Radical Polymerization. ACS Macro Lett. 2018, 7 (2), 184–189.
41. Wang, J.-S.; Matyjaszewski, K. Controlled “living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117 (20), 5614−5615.
42. Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101 (9), 2921−2990.
43. Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular Engineering by Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2014, 136 (18), 6513−6533.
44. Niu, J.; Page, Z. A.; Dolinski, N. D.; Anastasaki, A.; Hsueh, A. T.; Soh, H. T.; Hawker, C. J.. Rapid Visible Light-mediated Controlled Aqueous Polymerization with in Situ Monitoring. ACS Macro Lett. 2017, 6 (10), 1109–1113.
45. Bian, C.; Zhou, Y.-N.; Guo, J.-K.; Luo, Z.-H. Aqueous Metal-free Atom Transfer Radical Polymerization: Experiments and Model-based Approach for Mechanistic Understanding. Macromolecules 2018, 51 (6), 2367–2376.