簡易檢索 / 詳目顯示

研究生: 張元榮
Yuan-Jung Chang
論文名稱: 雙電壓系統的標準單元擺放
Low Power Standard Cell Placement for Dual Vdd systems
指導教授: 麥偉基
Wai-Kei Wak
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 36
中文關鍵詞: 擺放雙電壓標準單元
外文關鍵詞: Placement, Dual Vdd, Standard Cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在奈米技術下,由於更多的功能需求和時鐘頻率的上升,使得動態電能消耗大量增加。提供雙電壓的技術是很有效的方法防止在奈米設計下動態電流持續上升。在這篇論文中,我們採用一個用雙電壓的標準單元擺放演算法來減少總電能的消耗。另外,我們也同時減少電壓網路帶來的額外負擔。我們把已經給定好電壓的結果當作我們的輸入,然後一開始,我們用切割的工具將不同電壓的單元分成好幾個族群,第二,為了減少電能的消耗和電壓網路的複雜度,這些族群一開始將用模擬退火法演算法擺放到格子裡。第三,我們介紹一種分析式擺放演算法,將電能減少問題設成二次方程的公式。然而,這種方法會使單元之間有重疊的情況,所以我們採用單元轉移和調整單元位置的方法來解決單元重疊的問題。


    Dynamic power greatly increases in nanometer technologies because of increasing functional requirements as well as continuing emphasis on rising clock frequencies. The technique of supply dual voltages is one of the most effective ways to hold down the rise of dynamic power in nanometer design. In this paper, we present a standard cell placement algorithm with supporting dual supply voltages to reduce total power dissipation. Our approach also minimizes the power grid overhead by adopting voltage islands. We start at dual voltage assignment as our input. First, the cells with different supply voltages are separated into several clusters by hMETIS [6]. Second, in order to minimizing the total power consumption and power grid complexity, the clusters are first placed into a grid by using simulated annealing. Third, we introduce an analytical placement approach as a convex quadratic program formulation of the power minimization problem. However, the approach may cause overlap among cells, so we adopted the Cell Shifting and readjust cell methods [9] to reduce the overlap.

    中文摘要 i 致謝詞 ii ABSTRACT iii CONTENTS iv List of Figures v List of Tables vi Chapter 1 1 Introduction 1 Chapter 2 9 Related Work 9 Chapter 3 12 Problem Formulation 12 Chapter 4 13 Algorithm 13 4.1 The First Level Placement/Floorplan 15 4.1.1 Merge Cluster Algorithm 17 4.2 Second Level placement by Quadratic Programming 18 4.2.1 The Transformed Matrix on Voltage Island 20 4.2.2 Determine the Location of the Cell 22 4.2.3 Effective Methods for Overlap Reduction 23 4.2.4 Detailed Placement 24 Chapter 5 26 Experimental Results 26 Chapter 6 33 Conclusion 33 REFERENCE 34

    [1] http://www.public.iastate.edu/~nataraj/FastPlace.html
    [2] K.Usami and M.Horowitz, “Clustered voltage scaling technique for low power design,” In Proc ISLPED, pp. 3-8, 1995.
    [3] C.Chen, A.Srivastava and M. Sarrafzadeh, “On gate level power optimization using dual-supply voltages,” IEEE Trans. On VLSI Systems, vol. 9, pp.616-629, Oct, 2001.
    [4] S.H. Kulkarni, A.N. Srivastava and D. Sylvester, “A new algorithm for improved VDD assignment in Low power dual vdd systems,” In Proc. ISLPED, pp.200-205, Aug, 2004.
    [5] B. Liu, Y. Cai, Q. Zhou and X. Hong, “Power driven placement with layout aware supply voltage assignment for voltage island generation in dual-vdd designs,” In Proc. ASPDAC, pp. 582-587, Jan, 2006.
    [6] G. Karypis and V. Kumar. "hMetis: A Hypergraph Partitioning Package". Technical report, University of Minnesota Dec 1997.
    [7] F. Gao and J.P Hayes, “Total power reduction in CMOS circuits via gate sizing and multiple threshold voltage,” In Proc. DAC, pp. 31-36, Jun, 2005.
    [8] Srivastava, D Sylvester and D. Blaauw, “Power minimization using simultaneous gate sizing, dual-Vdd and dual Vth assignment,” In Proc. DAC, pp. 783-787, Jun, 2004.
    [9] N. Viswanathan and C.C. Chu, “FastPlace: Efficient analytical placement using cell shifting, iterative local refinement and a hybrid net model.” In Proc. ISPD, pp. 26-33, 2004.
    [10] J.M. Kleinhans, G. Sigl, F. M. Johnnes and K.J. Antreich, “GORDIAN: VLSI placement by quadratic programming and slicing optimization.” IEEE Trans. Computer-Aided Design, pp. 356-365 Vol. 10, No. 3, Mar. 1991,
    [11] H. Vaishnav and M. Pedram. “PCUBE: A performance driven placement algorithm for low power designs.” In Proceedings of the European Design Automation Conference. pp. 72-77 1993.
    [12] K. Usami, M. Igarashi, and F. Minami, “Automated low-power technique exploiting multiple supply voltages applied to a media processor.” IEEE J. Solid-State Circuits, pp. 463-472 Mar. 1997.
    [13] D. Sylvester and H. Kaul. Power-driven challanges in nanometer design. IEEE Design & Test of Computers, 13(6):12--21, Nov-Dec 2001.
    [14] Cadence Design Systems, Inc. “Down to the Wire–Requirements for Nanometer Design Implementation” 16-Aug-2005.
    [15] Cadence inc., Cadence/TSMC Reference Flow 6.0
    [16] Synopsys inc., Galaxy design platform multi-voltage design, available online, http://www.synopsys.com/products/power/multivoltage_bkgrd.pdf.
    [17] G. Karypis, and V. Kumar, “hMETIS: Multilevel k-way hypergraph partitioning.” In Proc. DAC pp.343-348 1999
    [18] M. Wang, X. Yang and M. Sarrafzadeh. “Dragon2000: Standard-cell placement tool for large industry circuits.” In Proc IEEE/ACM Intl. Conf. on Computer-Aided Design, pp. 260-263, 2000.
    [19] C. Sechen and A.L Sangiovanni-Vincentelli, “The timberwolf Placement and Routing Package.” Sc-20:510-522, 1985
    [20] C. Sechen and A.L Sangiovanni-Vincentelli, “Timberwolf 3.2: A new standard cell placement and global routing package.” In Proc DAC pp. 432-439, 1986.
    [21] A.B. Kahng, S. Mantik and I.L. Markov, “Min-max-placement for large- scale timing optimization.” In Proc ISPD pp. 143-148, 2002
    [22] A.E. Caldwell, A.B. Kahng and I.L Markov, “Can recursive bisection alone produce routable placements.?” In Proc DAC pp. 357-362, 2004
    [23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, vol. 220, pp.671–680, no. 4598, May 13, 1983.
    [24] M. Pan, N. Viswanathan, and C. Chu “An Efficient and Effective Detailed Placement Algorithm.” In Proc. ICCAD, pp. 48-55, 2005.
    [25] S. Goto, “An Efficient Algorithm for the Two-Dimensional Placement Problem in Electrical Circuit Layout.” In IEEE Transition on Circuits and Systems, pp. 12-18, Vol. CAS-28, No.1, 1981
    [26] R. Puri, L. Stok, J. Cohn, D. Sylvester, and A. Srivastava, “Pushing ASIC Performance in a Power Envelope.” In Proc. DAC, pp788-793, Jun. 2003.
    [27] C, M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving network partitions.” In Proc ACM/IEEE Design Automation, pp. 175-181, 1982
    [28] Phiroze N. Parakh, Richard B. Brown, and Karem A. Sakallah, “Congestion Driven Quadratic Placement.” In Proc DAC, pp. 275-278, 1998.
    [29] C. W. Yeh, and Y. S. Kang, “Layout Techniques Supporting the Use of Dual Supply Voltages for Cell-Based Designs” In Proc DAC, pp. 62-67, 1999
    [30] J. G. Spooner, “Chip designers voyage voltage island.” http://news.com.com/Chip designers voyage to voltage island/2100-1001_3-934355.html, 2002
    [31] http://www.fm.vslib.cz/~kes/asic/iscas/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE