簡易檢索 / 詳目顯示

研究生: 鄭憬筠
Ching-Yun Cheng
論文名稱: Spin-wave Relaxation in Diluted Magnetic Semiconductor
Spin-wave Relaxation in Diluted Magnetic Semiconductor
指導教授: 林秀豪
Hsiu-Hau Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 46
中文關鍵詞: 自旋波鬆弛稀磁半導體
外文關鍵詞: spin-wave relaxation, Diluted Magnetic Semiconductor(DMS)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用自恰的格林函數方法求出自旋波在稀磁半導體內的生命週期,並且發現當溫度升高時,自旋波的生命週期居然隨之增長。我們試圖以減少量子震盪的方式來看看是否自旋波生命週期會隨著溫度上升而縮短,但是似乎生命週期增長的趨勢並不是由量子震盪導致的。


    The Self-consistent Green's function method satis‾es Goldstone's theorem and preserves spin kinematics, whereas mean-field theory does not satisfy Goldstone's theory which predicts gapless spin-wave excitation, and the independent spin-wave theory using Holstein-Primakov boson (HP boson) in
    path integral formulism fails to preserve spin kinematics. The dilute impurity limit provides the nice translational invariance and allowing Fourier transform. Random Phase Approximation(RPA) lowers the order of Green's function and therefore the spin-wave Green's function can be extracted from two equations of motion. In isotropic coupling case, we've found the atypical phenomena of spin-wave lifetime increasing as temperature raises. Obviously, this spectral function narrowing can not due to thermal fluctuation. We then wonder if this awkward behavior comes from quantum fluctuation and whether this would be corrected to match our common sense that lifetime shortens at higher temperature when anisotropy being introduced, in other words, quantum fluctuation being suppressed. It turns out that neither thermal nor quantum fluctuation is to blame on the trend of the increase of spin-wave lifetime at high temperature. And at the same time we are also eager to look for experimental evidence that'll support our prediction.

    1 Introduction to Diluted Magnetic Semiconductor 2 Zener Model 2.1 Mean Field Picture 2.2 Missing of Gapless Spin-wave Excitation 3 Self-consistent Green's Function Method 3.1 Introduction of Green's Function 3.2 Derivation of Self-consistent Equations of Motion 3.3 Simplication from Translational Invariance 4 Temperature Dependence of Magnetization 4.1 Spin-wave Dispersion 4.2 Callen Formula 5 Spin-wave Relaxation 6 Effects of Anisotropy 7 Conclusion and Outlook

    Ohno, H. et al., Phys. Rev. Lett. 68, 2664-2667(1992)
    Ohno, H. et al., Appl. Phys. Lett. 69, 363-365(1996)
    Ku, K. C. et al., Appl. Phys. Lett. 82, 2302-2304(2003)
    A. H. MacDonald, P. Schiffer and N. Samarth, Nature Materials 4, 195-202(2005)
    J. Konig, H.-H. Lin, and A. H. MacDonald Phys. Rev. Lett. 84, 5628(2000)
    M.-F. Yang, S.-J. Sun, and M.-C. Chang Phys. Rev. Lett.
    96, 5636(2001)
    J. Konig, H.-H. Lin, and A. H. MacDonald Phys. Rev. Lett. 86, 5637(2001)
    J.E. Bunder, Shih-Jye Sun, and Hsiu-Hau Lin, Appl. Phys. Lett. 89, 072101(2006)
    H. B. Callen, Phys. Rev. 130, 890(1963)
    R. Akimoto, K. Ando, F. Sasaki, S. Kobayashi, and T. Tani,
    Phys. Rev. B 56, 9726(1997)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE