簡易檢索 / 詳目顯示

研究生: 陳智一
Chen, Jr-Yi
論文名稱: 布拉格光纖光柵功率感測之溫度與應變感測器
Simultaneous strain/temperature measurement with fiber Bragg grating using power method
指導教授: 王立康
Wang, LiKam
口試委員: 林凡異
Lin, F. Y.
馮開明
Feng, K. M.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 56
中文關鍵詞: 布拉格光柵應力感測溫度感測啁啾光柵
外文關鍵詞: fiber Bragg grating, strain sensor, temperature sensor, chirp grating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用FBG(Fiber Bragg Grating) 來量測溫度與應力的感測器並不屬於近期新穎的
    發明與突破,但在設備上可以有改良與簡化的空間。在本篇論文中,我們提出兩
    樣與一般光纖光柵感測器不同的突破:
    1. 利用光功率計(Powermeter) 取代光頻譜分析儀(OSA, Optical Spectrum Analysis)
    2. 利用一個FBG(Fiber Bragg Grating) 可同時對兩個變數(溫度與應變) 作偵測

    一般來說,FBG 的感測接收訊號端為光頻譜分析儀(OSA, Optical Spectrum
    Analysis),可準確的量測到波長、頻寬、波形、能量等資訊,但OSA 畢竟攜帶
    不便,成本也較昂貴,在這篇論文中,我們利用幾樣身邊簡單取得的器具並以光
    功率計(Powermeter) 來取代OSA,使用上更便利與簡潔,以感測器的角度來說,
    成本降低意味著離普及化又更進一步。
    另一方面,能夠只用一個FBG 量測到兩個變數,歸功於特殊的光路設計巧思,
    在這裡我們利用了三個光功率計、兩個光耦合器、一個光循環器、一個帶通濾波
    器(Band-pass filter)、一個FBG 與一個寬頻光源,來達成同時量測兩個變數的目
    的。在本論文實際架構上,我們構思出利用梯形彈簧鋼片,造成受力時各處曲率不同,而在各處產生不同應變,便可以簡單產生chirp grating的方法。

    的。


    Using FBG (Fiber Bragg Grating) sensors to measure temperature and strain is
    not a recent novel technique and breakthrough. But the measurements with FBGs
    as sensors can be improved and simplified. In this paper, we propose two different
    breakthroughs as to the general fiber grating sensors: 1. Using optical power meters
    to replace optical spectrum analyzers. 2. Using fiber Bragg grating to measure strain
    and temperature simultaneously. In general, the FBG receiving end is an optical
    spectrum analyzer (OSA, optical spectrum analyzer). It can measure wavelength,
    bandwidth, waveform, power..., and etc. But OSA is inconvenient and expensive. In
    this paper, we use a simple measurement scheme with optical power meters used to
    measure strain and temperature simultaneously. On the other hand, thanks to the
    special optical system design, it is realizable to measure the strain and temperature
    with only one FBG. In this paper, a trapezoid-shaped steel sheet is used to induce
    different curvature radii at different positions upon being stressed at a particular
    point. The FBG with a uniform grating period attached on this sheet then became
    a chirped grating when the sheet was stressed.

    Abstract ii Acknowledgements iii Contents iv List of Figures vi 1 序論 1 2 理論基礎 3 2.1 光纖傳遞基本原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 光纖基本參數 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 能量損耗 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 光柵基本原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 光纖光柵的種類 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.6 光纖光柵製作製作與基本原理 . . . . . . . . . . . . . . . . . . . . . . 11 2.7 光纖光柵與彈簧質量系統 . . . . . . . . . . . . . . . . . . . . . . . . 13 2.8 Chirp Grating 的產生 . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.9 光循環器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.10 光纖耦合器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.11 矩陣運算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 實驗介紹 19 3.1 實驗儀器簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 實驗前置作業與測試 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 iv 3.2.1 波長範圍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 中心波長 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.3 黏著劑選定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.4 彈簧秤改裝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.5 載台設計與完工 . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.6 帶通濾波器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 實驗系統確立 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 系統初步確認 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 系統缺陷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3.3 系統改良作法 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.4 系統改良結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.5 系統矩陣係數決定 . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 實驗系統量測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 總結與未來展望 50 5 後記 52 5.1 彈簧鋼片幾何 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 黏著劑 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.1 黏著劑選定 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2.2 改善黏著劑範圍 . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 FBG 工作範圍延展 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    [1] Shun Lien Chuang and Shun L Chuang. Physics of optoelectronic devices. 1995.
    [2] A Harris and P Castle. Bend loss measurements on high numerical aperture
    single-mode fibers as a function of wavelength and bend radius. Journal of
    Lightwave technology, 4(1):34–40, 1986.
    [3] Kenneth O Hill and Gerald Meltz. Fiber bragg grating technology fundamentals
    and overview. Journal of lightwave technology, 15(8):1263–1276, 1997.
    [4] KO Hill, Y Fujii, Derwyn C Johnson, and BS Kawasaki. Photosensitivity in
    optical fiber waveguides: Application to reflection filter fabrication. Applied
    physics letters, 32(10):647–649, 1978.
    [5] Long Jin, Weigang Zhang, Hao Zhang, Bo Liu, Jian Zhao, Qinchang Tu, Guiyun
    Kai, and Xiaoyi Dong. An embedded fbg sensor for simultaneous measurement
    of stress and temperature. IEEE Photonics Technology Letters, 18(1):154–156,
    2006.
    [6] Lae-Hyong Kang, Dae-Kwan Kim, and Jae-Hung Han. Estimation of dynamic
    structural displacements using fiber bragg grating strain sensors. Journal of
    sound and vibration, 305(3):534–542, 2007.
    [7] Alan D Kersey, Michael A Davis, Heather J Patrick, Michel LeBlanc, KP Koo,
    CG Askins, MA Putnam, and E Joseph Friebele. Fiber grating sensors. Journal
    of lightwave technology, 15(8):1442–1463, 1997.
    [8] Manfred Kreuzer. Strain measurement with fiber bragg grating sensors. HBM,
    Darmstadt, S2338-1.0 e, 2006.

    56

    [9] Hugo F Lima, Paulo F Antunes, João de Lemos Pinto, and Rogério N Nogueira.
    Simultaneous measurement of strain and temperature with a single fiber bragg
    grating written in a tapered optical fiber. IEEE Sensors Journal, 10(2):269–273,
    2010.

    [10] Gang-Chih Lin, Likarn Wang, CC Yang, MC Shih, and TJ Chuang. Ther-
    mal performance of metal-clad fiber bragg grating sensors. IEEE photonics

    technology letters, 10(3):406–408, 1998.
    [11] Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings
    of the Cambridge philosophical society, volume 51, pages 406–413. Cambridge
    Univ Press, 1955.
    [12] L Velluz and M Legrand. Progress in optical circular dichroism. Angewandte
    Chemie International Edition in English, 4(10):838–845, 1965.
    [13] Heng Xie, Junqiang Sun, and Danqi Feng. Simultaneous measurement of strain
    and temperature based on hybrid edf/brillouin laser. Optics Express, 24(11):
    11475–11482, 2016.
    [14] Da-Peng Zhou, Wing-Ki Liu, and Li Wei. Simultaneous strain/temperature

    measurement with fiber bragg grating and high-birefringence fiber loop mir-
    rors using an intensity-based interrogation method. In 2010 Symposium on

    Photonics and Optoelectronics, 2010.
    [15] Da-Peng Zhou, Li Wei, Wing-Ki Liu, and John WY Lit. Simultaneous strain
    and temperature measurement with fiber bragg grating and multimode fibers
    using an intensity-based interrogation method. IEEE Photonics Technology
    Letters, 21(7):468–470, 2009.

    [16] Da-Peng Zhou, Li Wei, Wing-Ki Liu, Yu Liu, and John WY Lit. Simulta-
    neous measurement for strain and temperature using fiber bragg gratings and

    multimode fibers. Applied optics, 47(10):1668–1672, 2008.

    QR CODE