簡易檢索 / 詳目顯示

研究生: 潘維平
Pan, Wei-Ping
論文名稱: 利用同號雙輕子訊號在強子對撞機中尋找重馬約拉納微中子
Probing the Heavy Majorana Neutrino by Same-Sign Dilepton Signal at Proton-Proton Collider
指導教授: 張維甫
Chang, We-Fu
口試委員: 倪維斗
Ni, Wei-Tou
張敬民
Cheung, Kingman
徐百嫻
Hsu, Pai-hsien Jennifer
李湘楠
Li, Hsiang-nan
林貴林
Lin, Guey-Lin
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 136
中文關鍵詞: 馬約拉納微中子同號雙輕子強子的撞機
外文關鍵詞: Majorana, neutrino, same-sign dilepton, proton-proton collider
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文中探討了在大型強子對撞機(LHC)和未來的質子對撞機(FCC-hh/SPPC)中找到質量為100 GeV ~ 10 TeV 馬約拉納微中子的可能性。我們發現輕子數不守恒的過程:p p → l± l′± j j是馬約拉納微中子在14/100 TeV 強子對撞機中的一個重要的訊號。為了了解馬約拉納在強子對撞機中的特性,我們研究了兩個簡化的有效模型,一個在標準模型的架構上增加了右手微中子並混合了左右手微中子、另一個是帶著一個質量約在TeV的馬學拉納微中子的簡化左右對稱模型。基於論文中發現的特性,我們分別對兩個模型提出提高馬約拉納微中子訊雜比的策略和演算法,然後也討論了在未來的強子對撞機中驗證這些模型的潛力。


    In the thesis, we study the potential of discovering Majorana neutrino in the mass range from 100 GeV to 10 TeV at the LHC (Run II) and the future FCC-hh/SPPC with luminosities 3 ab−1. The lepton number violating process p p → l± l′± j j will be a significant probe for a Majorana neutrino at the 14/100 TeV proton-proton collider. To illustrate the essential physics, we study a simplified model with mixing between the left-handed and the right- handed neutrinos, also a left-right symmetric model with a TeV level Majorana neutrino. Some strategies and algorithms are proposed to enhance the signal to background ratio for each model. Moreover, the discovery potential for each model at the current and future proton-proton colliders is also discussed.

    List of Figures v List of Tables vii I 1 2 Background and Motivation 1 The Standard Model 3 1.1 QuantumFieldTheory....................... 4 1.2 Fields,ParticlesandGaugeGroups................ 4 Neutrinos 9 2.1 TheNeutrino ............................ 10 2.2 TheMassofNeutrino ....................... 11 2.2.1 Type-0............................ 11 2.2.2 Type-ISeesawModel ................... 12 2.2.3 Type-IISeesawModel ................... 12 2.2.4 Type-IIISeesawModel .................. 13 2.2.5 ZeeModel.......................... 13 Heavy Majorana Neutrino 15 Heavy Majorana Neutrino 17 3.1 Introduction............................. 18 3.1.1 TheEffectiveLagrangian ................. 18 3.1.2 ∆L=±1 .......................... 20 3.1.3 ∆L=±2 .......................... 21 3.1.4 The Flavor Changing Same-Sign Events . . . . . . . . . 22 3.2 TheParameters........................... 22 3.2.1 TheMixingAngleV’s................... 23 3.2.2 Vν .............................. 23 3.2.3 TheMisidentificationRateδ ............... 23 The S-channel dominant mass region 27 4.1 TheSingleNProduction...................... 28 4.1.1 TheContributionfromthePDF ............. 31 4.2 MadGraphSimulation ....................... 33 4.2.1 SomeSelectionsafterDELPHES............. 34 4.2.2 TheResonanceoftheWBoson.............. 35 4.2.3 The Resonance of the Majorana Neutrino . . . . . . . . 37 4.2.4 CutFlow .......................... 38 4.3 pT DistributionoftheSame-SignDileptons . . . . . . . . . . . 39 4.3.1 Simulations ......................... 40 4.3.2 plT,pLT Comparison..................... 42 4.4 BackgroundandStatistics..................... 46 4.4.1 TheSMIrreducibleBackground . . . . . . . . . . . . . 46 4.4.2 The Fake Lepton and Charge Flip Backgrounds . . . . . 47 4.4.3 TheEventNumberoftheBackgrounds . . . . . . . . . 48 4.4.4 Semi-Model-Independent Parameter . . . . . . . . . . . 49 4.4.5 Statistic........................... 50 4.5 Constraintson95%C.L....................... 51 4.6 S-channelEventofType-IseesawLikeModel . . . . . . . . . . 53 The T-channel Dominant Mass Region 55 5.1 T-channelvsS-channel....................... 56 III 6 5.3 DataGeneration .......................... 63 5.3.1 AfterDELPHES ...................... 64 5.3.2 KineticDistributions.................... 65 5.4 CutFlowandBackground..................... 67 5.4.1 CutFlow .......................... 68 5.4.2 Backgrounds ........................ 69 5.4.3 Statistics .......................... 70 5.5 95%C.L.ontheMixingAngle .................. 70 5.5.1 Mass-DependenceCuts .................. 72 5.6 ConclusionandImprovement ................... 74 Left-Right symmetric model 75 The Left-Right Symmetric Model 77 6.1 Introduction............................. 78 6.2 The Simplified Left-Right Symmetric Model . . . . . . . . . . . 79 6.3 BranchingRatioandtheMassHierarchy. . . . . . . . . . . . . 81 6.3.1 BranchingRatioB(N→l±jj).............. 81 6.3.2 BranchingRatioB(WR± →l±l±jj) . . . . . . . . . . . 81 6.3.3 MN<MWR ......................... 82 6.3.4 MN>MWR ......................... 83 6.4 A4-bodyCorrelatedKineticVariable . . . . . . . . . . . . . . 84 6.5 SurvivalRate............................ 86 6.6 TheCuts .............................. 88 6.6.1 pTs.............................. 88 6.6.2 Ml2,j1,j2 ........................... 89 6.6.3 Ml1,l2,j1,j2 .......................... 89 6.6.4 E............................... 90 6.7 Constraints ............................. 91 6.7.1 CrossSectionandSurvivalEvents . . . . . . . . . . . . 94 6.7.2 Mass-DependentCuts ................... 95 6.7.3 MN=1MWR ........................ 96 2 6.7.4 MN=MWR±0.1TeV................... 97 6.7.5 MN=2MWR ........................ 98 6.8 Conclusion ............................. 99 7 Summary and conclusion 101 A Appendix 105 A.1 The pT Distribution of the Same-Sign Dileptons . . . . . . . . 106 A.1.1 plT .............................. 106 A.1.2 pLT .............................. 107 A.2 Decaywidths ............................ 109 Bibliography 111

    [1] S. L. Glashow, Nucl. Phys. 22, 579 (1961). doi:10.1016/0029- 5582(61)90469-2
    [2] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967). doi:10.1103/PhysRevLett.19.1264
    [3] A. Salam., Weak and electromagnetic interactions - in Elementary particle theory: relativistic groups and analyticity, N. Svartholm, ed p. 367. Almqvist & Wiksell, 1968. Proceedings of the eighth Nobel symposium.
    [4] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964). doi:10.1103/PhysRevLett.13.321
    [5] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964). doi:10.1103/PhysRevLett.13.508
    [6] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964). doi:10.1103/PhysRevLett.13.585
    [7] S. Tomonaga, Prog. Theor. Phys. 1, 27 (1946). doi:10.1143/PTP.1.27
    [8] J. S. Schwinger, Phys. Rev. 73, 416 (1948). doi:10.1103/PhysRev.73.416
    [9] J. S. Schwinger, Phys. Rev. 74, 1439 (1948). doi:10.1103/PhysRev.74.1439
    [10] R. P. Feynman, Phys. Rev. 76, 749 (1949). doi:10.1103/PhysRev.76.749
    [11] R. P. Feynman, Phys. Rev. 76, 769 (1949). doi:10.1103/PhysRev.76.769
    [12] R. P. Feynman, Phys. Rev. 80, 440 (1950). doi:10.1103/PhysRev.80.440
    [13] F. J. Dyson, Phys. Rev. 75, 486 (1949). doi:10.1103/PhysRev.75.486
    [14] F. J. Dyson, Phys. Rev. 75, 1736 (1949). doi:10.1103/PhysRev.75.1736
    [15] O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964). doi:10.1103/PhysRevLett.13.598
    [16] M. Y. Han and Y. Nambu, Phys. Rev. 139, B1006 (1965). doi:10.1103/PhysRev.139.B1006
    [17] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973). doi:10.1103/PhysRevLett.30.1343
    [18] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973). doi:10.1103/PhysRevLett.30.1346
    [19] P. A. R. Ade et al. [Planck Collaboration], arXiv:1502.01589 [astro- ph.CO].
    [20] J. D. Bjorken and S. D. Drell, “Relativistic quantum fields,” ISBN- 0070054940.
    [21] T. P. Cheng and L. F. Li, “Gauge Theory Of Elementary Particle Physics,” Oxford, Uk: Clarendon ( 1984) 536 P. ( Oxford Science Publications)
    [22] S. Pokorski, “Gauge Field Theories,”
    [23] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,” Reading, USA: Addison-Wesley (1995) 842 p
    [24] S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations,”
    [25] S. Weinberg, “The quantum theory of fields. Vol. 2: Modern applications,”
    [26] S. Weinberg, “The quantum theory of fields. Vol. 3: Supersymmetry,” ISBN-9780521670555.
    [27] M. D. Schwartz, “Quantum Field Theory and the Standard Model,” ISBN-9781107034730.
    [28] M. Gell-Mann, Phys. Lett. 8, 214 (1964). doi:10.1016/S0031- 9163(64)92001-3
    [29] G. Zweig, CERN-TH-401.
    [30] G. Zweig, Developments in the Quark Theory of Hadrons, Volume 1. Edited by D. Lichtenberg and S. Rosen. pp. 22-101
    [31] E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969). doi:10.1103/PhysRevLett.23.930
    [32] M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969). doi:10.1103/PhysRevLett.23.935
    [33] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D 2, 1285 (1970). doi:10.1103/PhysRevD.2.1285
    [34] J. E. Augustin et al. [SLAC-SP-017 Collaboration], Phys. Rev. Lett. 33, 1406 (1974) [Adv. Exp. Phys. 5, 141 (1976)]. doi:10.1103/PhysRevLett.33.1406
    [35] J. J. Aubert et al. [E598 Collaboration], Phys. Rev. Lett. 33, 1404 (1974). doi:10.1103/PhysRevLett.33.1404
    [36] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973). doi:10.1143/PTP.49.652
    [37] S. W. Herb et al., Phys. Rev. Lett. 39, 252 (1977). doi:10.1103/PhysRevLett.39.252
    [38] F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74, 2626 (1995)
    doi:10.1103/PhysRevLett.74.2626 [hep-ex/9503002].
    [39] S. Abachi et al. [D0 Collaboration], Phys. Rev. Lett. 74, 2422 (1995) doi:10.1103/PhysRevLett.74.2422 [hep-ex/9411001].
    [40] Arabatzis, Theodore, (2006). "Representing electrons: A biographical approach to theoretical entities". University of Chicago Press.
    [41] J. J. Thomson, Phil. Mag. 44, 293 (1897). doi:10.1080/14786449708621070
    [42] M. L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975).
    doi:10.1103/PhysRevLett.35.1489
    [43] F. Reines and C. L. Cowan, Nature 178, 446 (1956). doi:10.1038/178446a0
    [44] G. Danby, J. M. Gaillard, K. A. Goulianos, L. M. Lederman, N. B. Mis- try, M. Schwartz and J. Steinberger, Phys. Rev. Lett. 9, 36 (1962). doi:10.1103/PhysRevLett.9.36
    [45] K. Kodama et al. [DONUT Collaboration], Phys. Lett. B 504, 218 (2001) doi:10.1016/S0370-2693(01)00307-0 [hep-ex/0012035].
    [46] A. Einstein, Annalen Phys. 17, 132 (1905).
    [47] A. H. Compton, Phys. Rev. 21, 483 (1923). doi:10.1103/PhysRev.21.483
    [48] UA1 and UA2 collaborations, CERN, http://library.web.cern.ch/archives/CERN_archive/guide/experimental_ physics/SPS/isaua2
    [49] LEITE LOPES, J.. Forty years of the first attempt at the electroweak unification and of the prediction of the weak neutral boson Z0. Braz. J. Phys. [online]. 1999, vol.29, n.3 [cited 2016-07-05], pp.574-578.
    [50] M. Gell-Mann, Phys. Rev. 125, 1067 (1962). doi:10.1103/PhysRev.125.1067
    [51] B. R. Stella and H. J. Meyer, Eur. Phys. J. H 36, 203 (2011) doi:10.1140/epjh/e2011-10029-3 [arXiv:1008.1869 [hep-ex]].
    [52] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) doi:10.1016/j.physletb.2012.08.021 [arXiv:1207.7235 [hep-ex]].
    [53] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) doi:10.1016/j.physletb.2012.08.020 [arXiv:1207.7214 [hep-ex]].
    [54] R. Davis, Jr., D. S. Harmer and K. C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968). doi:10.1103/PhysRevLett.20.1205
    [55] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87, 071301 (2001) doi:10.1103/PhysRevLett.87.071301 [nucl-ex/0106015].
    [56] S. Abe et al. [KamLAND Collaboration], Phys. Rev. Lett. 100, 221803
    (2008) doi:10.1103/PhysRevLett.100.221803 [arXiv:0801.4589 [hep-ex]].
    [57] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562 (1998) doi:10.1103/PhysRevLett.81.1562 [hep-ex/9807003].
    [58] F. P. An et al. [Daya Bay Collaboration], Phys. Rev. Lett. 108, 171803 (2012) doi:10.1103/PhysRevLett.108.171803 [arXiv:1203.1669 [hep-ex]].
    [59] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958) [Zh. Eksp. Teor. Fiz. 34, 247 (1957)].
    [60] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962). doi:10.1143/PTP.28.870
    [61] P. Minkowski, Phys. Lett. B 67, 421 (1977). doi:10.1016/0370- 2693(77)90435-X
    [62] M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc. C 790927, 315 (1979) [arXiv:1306.4669 [hep-th]].
    [63] T. Yanagida, Conf. Proc. C 7902131, 95 (1979).
    [64] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).
    doi:10.1103/PhysRevLett.44.912
    [65] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980). doi:10.1103/PhysRevD.22.2227
    [66] M. Magg and C. Wetterich, Phys. Lett. B 94, 61 (1980). doi:10.1016/0370- 2693(80)90825-4
    [67] G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B 181, 287 (1981). doi:10.1016/0550-3213(81)90354-0
    [68] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981). doi:10.1103/PhysRevD.23.165
    [69] T. P. Cheng and L. F. Li, Phys. Rev. D 22, 2860 (1980). doi:10.1103/PhysRevD.22.2860
    [70] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44, 441 (1989). doi:10.1007/BF01415558
    [71] E. Ma, Phys. Rev. Lett. 81, 1171 (1998) doi:10.1103/PhysRevLett.81.1171 [hep-ph/9805219].
    [72] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979). doi:10.1103/PhysRevLett.43.1566
    [73] A. Zee, Phys. Lett. B 93, 389 (1980) Erratum: [Phys. Lett. B 95, 461 (1980)]. doi:10.1016/0370-2693(80)90349-4, 10.1016/0370-2693(80)90193-
    8
    [74] P. Langacker and D. London, Phys. Rev. D 38, 907 (1988). doi:10.1103/PhysRevD.38.907
    [75] S. Bergmann and A. Kagan, Nucl. Phys. B 538, 368 (1999) doi:10.1016/S0550-3213(98)00686-5 [hep-ph/9803305].
    [76] W. Y. Keung and G. Senjanovic, Phys. Rev. Lett. 50, 1427 (1983). doi:10.1103/PhysRevLett.50.1427
    [77] J. N. Ng, A. de la Puente and B. W. P. Pan, JHEP 1512, 172 (2015) doi:10.1007/JHEP12(2015)172 [arXiv:1505.01934 [hep-ph]].
    [78] A. M. Baldini et al. [MEG Collaboration], arXiv:1605.05081 [hep-ex].
    [79] V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 748, 144 (2015)
    doi:10.1016/j.physletb.2015.06.070 [arXiv:1501.05566 [hep-ex]].
    [80] T. Han and B. Zhang, Phys. Rev. Lett. 97, 171804 (2006) doi:10.1103/PhysRevLett.97.171804 [hep-ph/0604064].
    [81] A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63, 189 (2009) doi:10.1140/epjc/s10052-009-1072-5 [arXiv:0901.0002 [hep-ph]].
    [82] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, Com- put. Phys. Commun. 185, 2250 (2014) doi:10.1016/j.cpc.2014.04.012 [arXiv:1310.1921 [hep-ph]].
    [83] J. Alwall et al., JHEP 1407, 079 (2014) doi:10.1007/JHEP07(2014)079 [arXiv:1405.0301 [hep-ph]].
    [84] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 717, 109 (2012) doi:10.1016/j.physletb.2012.09.012 [arXiv:1207.6079 [hep-ex]].
    [85] F. Giordano, CERN-THESIS-2013-024, CMS-TS-2013-047.
    [86] [ATLAS Collaboration], ATLAS-CONF-2012-139.
    [87] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 72, 2056 (2012) doi:10.1140/epjc/s10052-012-2056-4 [arXiv:1203.5420 [hep-ex]].
    [88] G. Aad et al. [ATLAS Collaboration], JHEP 1507, 162 (2015) doi:10.1007/JHEP07(2015)162 [arXiv:1506.06020 [hep-ex]].
    [89] https://answers.launchpad.net/mg5amcnlo/+question/257527
    [90] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974) Erratum: [Phys. Rev. D 11, 703 (1975)]. doi:10.1103/PhysRevD.10.275, 10.1103/Phys- RevD.11.703.2
    [91] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975). doi:10.1103/PhysRevD.11.566
    [92] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558 (1975). doi:10.1103/PhysRevD.11.2558
    [93] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975). doi:10.1103/PhysRevD.12.1502
    [94] G. Senjanovic, Nucl. Phys. B 153, 334 (1979). doi:10.1016/0550- 3213(79)90604-7
    [95] R. N. Mohapatra, New York, USA: Springer (2003) 421 p. doi:10.1007/978- 1-4757-1928-4
    [96] V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 74, no. 11, 3149 (2014) doi:10.1140/epjc/s10052-014-3149-z [arXiv:1407.3683 [hep-ex]].
    [97] PhD thesis LaTeX template, FluorTools, www.fluortools.com
    [98] J. Ellis, arXiv:1601.05437 [hep-ph].

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE