簡易檢索 / 詳目顯示

研究生: 柯伶昀
Ling Yun Ko
論文名稱: 克雷白氏菌乙醯甲基甲醇基因轉錄調控
Transcription Regulation of aco Operon in Klebsiella pneumoniae
指導教授: 張晃猷
Hwan-You Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 61
中文關鍵詞: 克雷白氏菌乙醯甲基甲醇轉錄調控突變葡萄糖pH值啟動區報導系統
外文關鍵詞: Klebsiella pneumoniae, acetoin, transcri[tion regulation, mutagenesis, glucose, pH, promoter, reporter
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在克雷白氏菌中,AcoK是調控aco基因群的轉錄因子。AcoK屬於LuxR家族中結合ATP的大調控因子群,且與MalT蛋白質具高度相似性。為進一步了解AcoK作用原理,我們建立了acoABCD或acoK基因啟動區與luxAB基因的報導系統並量測其表現。acoABCD基因啟動區的活性在對數生長期時非常低,並在早期靜止期才又回升。被認定為誘導物的乙醯甲基甲醇可刺激啟動區的表現,而葡萄糖則表現抑制現象。相反的,AcoK蛋白質對本身的基因並不具有自我調控能力。其他的乙醯甲基甲醇代謝物如2, 3-丁二醇與乙醛,以及其他糖類包括半乳糖,乳糖和甘油對acoABCD及acoK啟動區的表現能力並無明顯影響,而在210分鐘時,麥芽糖則可刺激acoK啟動區的表現。此外,啟動區的活性在鹼性pH值時會增加。在這些調控區的分析中,我們也找到一些區域與調控acoK及acoABCD基因表現有關的區域。為了解AcoK的功能,採用了針對特定區域與截型的突變方法。其中第一結合ATP結構區對活化acoABCD啟動區是必須的。同時,這活化機制也需要位於第416位置的天門冬胺酸(Asp)。總結來說,我們在此研究中測試了許多包括乙醯甲基甲醇,葡萄糖,乳糖,與pH值等影響acoABCD與acoK基因啟動區的因子及AcoK蛋白質結構區的作用,這些結果明顯增進我們對乙醯甲基甲醇基因的轉錄機制的了解。


    AcoK is a transcription regulator of aco operon in Klebsiella pneumoniae. It belongs to large ATP binding regulators of the LuxR family and shows high homology with MalT. In order to understand how AcoK regulates its target genes, the promoter region of either acoABCD or acoK was fused with the reporter gene luxAB and its expression was measured. The activity of Paco was very low during logarithmic growth and it started to increase after entering early stationary phase. Acetoin was shown to function as an inducer for the expression of aco genes, whereas glucose exhibited a repression effect. The result is in contrast to the expression of acoK, which is not autoregulated. The catabolites of acetoin metabolism such as 2,3-butanediol and acetaldehyde as well as other carbohydrates including galactose, lactose, and glycerol did not affect the expression of Paco and PacoK, whereas maltose stimulates the expression of PacoK at 210 min. The activity of Paco appeared to be high at alkaline pH0. Regions required for the function of Paco and PacoK were also identified. Finally, site-directed mutagenesis and deletion analysis were performed to investigate the function of AcoK. The ATP-binding domain I was shown to be essential for the ability of AcoK to activate Paco. The Asp residue located at 416th amino acid was also found to be critical for Paco activity. In conclusion, we have identified several factors that affect Paco and PacoK, and domains in AcoK that are critical for its activity. The result provides important insight on the transcription mechanism of aco genes.

    Introduction……………………………………………1 Materials and methods…………………………………5 Results……………………………………………………10 Discussion…………………………………………………20 References…………………………………………………27 Figures Tables Appendix

    Alonzo S., M. Heyde, P. Laloi, and R. Portalier. 1998. Analysis of the effect exert by extracellular pH on the maltose regulon in Escherichia coli K-12. Microbiol. 144:3317-3325.
    Barik, S. 1996. Site-directed mutagenesis in vitro by megaprimer PCR. Methods Mole. Biol. 57:203-215.
    Benner, D., N. Muller, and W. Boos. 1985. Temperature-sensitive catabolite activator protein in Escherichia coli BUG6. J. Bacteriol. 161:347-352.
    Bloch, M. A., and O. Raibaud. 1986. Comparison of malA regions of Escherichia coli and Klebsiella pneumoniae. J. Bacteriol. 168:1220-1227.
    Blomqvist, K., M. Nikkola, P. Lehtovaara, M. L. Suihko, U. Airaksinen, K. B. Straby, J. K. C. Knowles, and M. E. Penttila. 1993. Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J. Bacteriol. 175:1392-1404.
    Boos, W., and H. Shuman. 1998. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62:204-229.
    Botsford, J. L., and J.G. Harman. 1992. Cyclic AMP in prokaryotes. Microbiol. Rev. 56:100-122.
    Carpenter, J. L. 1990. Klebsiella pulmonary infection: occurrence at one medical center and review. Rev. Infec. Dis. 12:672-682.
    Chang, A. C. Y., and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from p15A cryptic miniplasmid. J. Bacteriol. 134:1141-1156.
    Chapon, C. 1982. Expression of malT, the regulator gene of the maltose region in Escherichia coli, is limited both at transcription and translation. EMBO J. 1:369-374.
    Deng, W. L., H. Y. Chang, and H. L. Peng. 1994. Acetoin catabolite system of Klebsiella pneumoniae CG43: sequence, expression, and organization of the aco operon. J. Bacteriol. 176:3527-3535.
    Dolin, M. I. 1955. Diacetyl oxidation by Streptococcus faecalis, a lipoic acid-dependent reaction. J. Bacteriol. 69:51-58.
    Eppler, T., and W. Boos. 1999. Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIAGlc and is mediated by cAMP levels. Mol. Microbiol. 33:1221-1231.
    Fründ, C., H. Priefert, A. Steinbüchel, and H. G. Schlegel. 1989. Biochemical and genetic analysis of acetoin catabolism in Alcaligenes eutrophus. J. Bacteriol. 171:6539-3548.
    Heyde, M., J. L. Coll, and R. Portalier. 1991. Identification of Escherichia coli genes whose expression increases as a function of external pH. Mol. Gen. Genet. 229:197-205.
    Hieke, E., and D. Vollbrecht. 1980. Metabolic activities of Lactobacillus brevis. Effect of pH, glucose and butane-2,3-diol. Z. Lebensm. Unters. Forsch. 171:38-40.
    Hullin, R. P., and H. Hassall. 1962. The synthesis of cell constituents from butane-2,3-diol by Pseudomonas sp. Biochem. J. 83:298-303.
    Jay, J. M. 1982. Antimicrobiol properties of diacetyl. Appl. Environ. Microbiol. 44:525-532.
    Johansen, L., K. Bryn, and F. C. Størmer. 1975. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J. Bacteriol. 123:1124-1130.
    Juni, E., and G. A. Heym. 1956. A cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol and diacetyl. I. General aspects of the 2,3-butanediol cycle. J. Bacteriol. 71:425-432.
    Kominek, L. A., and H. O. Halvorson. 1965. Metabolism of poly-b-hydroxybutyrate and acetoin in Bacillus cereus. J. Bacteriol. 90:1251-1259.
    Kondo, T., C. A. Strayer, R. D. Kulkarni, W. Taylor, M. Ishiura, S. S. Golden, and C. H. Johnson. 1993. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in Cyanobacteria. Proc. Natl. Acad. Sci. USA 90:5672-5676.
    Krüger, N., and A. Steinbüchel. 1992. Identification of acoR, a regulatory gene for the expression of genes essential for acetoin catabolism in Alcaligenes eutrophus H16. J. Bacteriol. 174:4391-4400.
    Lopez, J. M., B. Thoms, and H. Rehbein. 1975. Acetoin degradation in Bacillis subtitilis by direct oxidative cleavage. Eur. J. Biochem. 57:425-430.
    Matin, A. 1996. Role of alternative sigma factors in starvation protein synthesis-novel mechanisms of catabolite repression. Res. Microbiol. 147:494-505
    Meighen, E. A. 1993. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55:123-142.
    Meighen, E. A. 1993. Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB J. 7:1016-1022.
    Morett, E., and L. Segovia. 1993. The s54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J. Bactariol. 175:6067-6074.
    Oppermann, F. B., A. Steinbüchel, and H. G. Schlegel. 1988. Utilization of methylacetoin by the strict anaerobe Pelobacter carbinolicus and consequences for the catabolism of acetoin. FEMS Microbiol. Lett. 55:47-52.
    Oppermann, F. B., B. Schmidt, and A. Steinbuchel. 1991. Purification and characterization of acetoin:2,6-dichlorophenolindophenol oxidoreductase, dihydrolipoamide dehydrogenase, and dihydrolipoamide acetyltransferase of the Pelobacter carbinolicus acetoin dehydrogenase enzyme system. J. Bacteriol. 173:757-767.
    Osuna, R., and R. A. Bender. 1991. Klebsiella aerogenes catabolite gene activator protein and the gene encoding it (crp). J. Bacteriol. 173:6626-6631.
    Peng, H. L., P. Y. Wang, C. M. Wu, D. C. Hwang, and H. Y. Chang. 1992. Cloning, sequencing and heterologous expression of a Klebsiella pneumoniae gene encoding an FAD-independent acetolactate synthase. Gene 117:125-130.
    Peng, H. L., P. Y. Wang, J. L. Wu, C. T. Chiu, and H. Y. Chang. 1991. Molecular epidemiology of Klebsiella pneumoniae. Chin. J. Microbiol. Immunol. (Taipei) 24:264-271.
    Peng, H. L., S. R. Hsiao, and H. Y. Chang. 1999. Characterization of MdcR, a transcription factor of the malonate decarboxylase operon in Klebsiella pneumoniae. J. Bacteriol. 181:2302-2306.
    Peng, H. L., T. F. Fu, S. P. Liu, and H. Y. Chang. 1992. Cloning and expression of the Klebsiella pneumoniae galactose operon. J. Biochem. 112:604-608.
    Peng, H. L., Y. H. Yang, W. L. Deng, and H. Y. Chang. 1997. Identification and characterization of acoK, a regulatory gene of the Klebsiella pneumoniae acoABCD operon. J. Bacteriol. 179:2497-1504.
    Podschun, R., and Ullmann, U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, toxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11:589-603.
    Ramseier, T. M. 1996. Cra and the control of carbon flux via metabolic pathways. Res. Microbiol. 147:489-93.
    Richet, E., and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8:981-987.
    Saier, Jr. M. H. 1998. Multiple mechanisms controlling carbon metabolism in bacteria. Biotech and Bioengin 58:170-174.
    Saier, Jr. M. H., and T. M. Ramseier. 1996. The catabolite repressor/activator (Cra) protein of enteric bacteria. J. Bacteriol. 178:3411-3417.
    Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
    Schreiber, V., and E. Richet. 1999. Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP. J. Biol. Chem. 274:33221-33226.
    Schrijver, A. E., and R. D. Mot. 1999. A subfamily of MalT-related ATP-dependent regulators in the LuxR family. Microbiol. 145:1287-1288.
    Shaw, J. J., and C. I. Kado. 1986. Development of a Vibro bioluminescence gene-set to monitor phytopathogenic bacteria during the ingoing disease process in a non-disruptive manner. Bio/Tech 4:560-564.
    Shen, B. H. P., and W. Boos. 1973. Regulation of the b-methylgalactose transport system and the galactose-binding protein by the cell cycle of Escherichia coli. Proc. Nat. Acad. Sci. USA 70:1481-1485
    Studier, F. W., and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to detect selective high-level expression of cloned genes. J. Mol. Biol. 189:113-130.
    Vertommen, D., L. Bertrand, B. Sontag, A. Di Pietro, M. P. Louckx., H. Vidal, L. Hue, and M. H. Rider. 1996. The ATP-binding site in the 2-kinase domain of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the role of Lys-54 and Thr-55 by site-directed mutagenesis. J. Biol. Chem. 271:17875-17880.
    Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945-51.
    Yoshida, M., and T. Amano. 1995. A common topology of proteins catalyzing ATP-triggered reaction. FEBS Lett. 359:1-5

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE