簡易檢索 / 詳目顯示

研究生: 陳永展
Chen, Yung-Chan
論文名稱: 具奈米碳管微電極陣列之神經細胞膜內膜外量測微系統設計
The Design of Microsystems for Intracellular and Extracellular Neural Recording with Carbon-Nanotube-Coupled Microelectrode Array
指導教授: 陳新
Chen, Hsin
口試委員: 陳科宏
黃聖傑
葉世榮
鄭桂忠
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 126
中文關鍵詞: 奈米碳管神經放大器生醫積體電路神經細胞膜內量測神經細胞膜外量測植入式神經細胞電極陣列
外文關鍵詞: carbon nanotube, neural amplifier, neural integrated circuit, intracellular recording, extracellular recording, implantable, neuron, electrode array
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Neural prosthesis has helped many patients to restore their physiological
    functions. To achieve high resolution neural recording/
    stimulation, high density microelectrode array (MEA) is necessary
    for the development of advanced neural prosthesis. As the electrode
    size shrinking, the impedance of the electrodes which are
    made of gold, platinum, and silver chloride will increase, thus degrades
    the signal-to-noise ratio (SNR) of neural recording. Carbon
    nanotube (CNT) possesses good electrical conductance and material
    stability. Using CNT-coupled MEA to interface with neurons
    has been proposed in literatures, and the electrode impedance is
    greatly improved after CNT coating on the electrode. In this thesis,
    at first, the high temperature synthesis CNT bundles are employed
    to fabricate the two types of CNT probes (i-CNT and g-
    CNT probes). The two types of CNT probes have been proved
    that can record the neural activity faithfully. Besides, to test the
    endurance of the CNT probes, the CNT probes are forced to conduct
    a 500 nA direct current for two hours. The experimental results
    indicate that this direct current does not degrade the CNT
    probes’ performance, instead, improves the recording capability of
    the CNT probes. This improvement is attributed to the permanent
    (chemical) and non-permanent (physical) mechanisms. Besides,
    using low temperature (400C) chemical vapor deposition (CVD)
    method to synthesize the CNTs on the flexible substrate directly
    has been proposed in this thesis. By combining the designed neural
    amplifier array, an active, flexible CNT-coupled microelectrode
    array (cMEA) is formed. The experimental results prove that the
    proposed active, flexible cMEA can not only reduce the electrode
    impedance, but also record the neural activities (neural spike of
    crayfish nerves and ECoG of rat brain) faithfully.
    In the last part of this thesis, an integrated system for both intracellular
    and extracellular neural recording is proposed. This
    chip (6.25 mm2) provides four intracellular and four extracellular
    neural recording channels. For the designed extracellular neural
    recording amplifier, the calculated noise efficiency factor (NEF) is
    5.04, which is comparable with the state-of-the-art designs. The
    results of the biological experiments further indicate that the designed
    extracellular neural amplifier can record the neural activity
    faithfully. For the intracellular neural recording channel, both the
    size (0.3 mm2) and power consumption (0.304 mW) are lower than
    those proposed in literatures. The designed intracellular recording
    channel is proved that can record the resting potential and the
    action potential of the LG neurons of crayfish. Besides, the designed
    current injection circuitry can further inject current pulses
    into the LG neurons to evoke the action potentials. The experimental
    results demonstrate that the designed circuitry can achieve
    intracellular current clamp recording.


    Contents vii List of Figures xi List of Tables xvii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Chapter Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Literature Review 5 2.1 Electrophysiology of Neurons . . . . . . . . . . . . . . . . . . . . 5 2.2 Neural Recording Mechanisms . . . . . . . . . . . . . . . . . . . 8 2.2.1 Intracellular Recording . . . . . . . . . . . . . . . . . . . 8 2.2.2 Extracellular Recording . . . . . . . . . . . . . . . . . . . 13 2.3 Neuro-Electronic Interface . . . . . . . . . . . . . . . . . . . . . . 15 2.4 The Development of Microelectrode Arrays (MEAs) . . . . . . . 17 2.4.1 Planar MEAs . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Microprobe Array . . . . . . . . . . . . . . . . . . . . . . 20 2.4.3 Electrode Materials . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Microsystems for Neuro-Electronic Interface . . . . . . . . . . . 22 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Fabrication and Characterization of the CNT Probes 27 3.1 Fabrication of the CNT Probes . . . . . . . . . . . . . . . . . . . 27 3.2 Electrophysiological Experiments . . . . . . . . . . . . . . . . . . 30 3.3 Endurance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Electrical Characterization . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Summary for the Characterization of the CNT Probes . . . . . . 44 4 An Active, Flexible CNT-Coupled Microelectrode Array (cMEA) 45 4.1 Design of the Active, Flexible cMEA . . . . . . . . . . . . . . . . 45 4.2 Fabrication of the Flexible cMEA . . . . . . . . . . . . . . . . . . 47 4.3 Design of the Low-Noise, Neural Recording Amplifier . . . . . 49 4.4 The Active, Flexible cMEA . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 Characterization of the Flexible cMEA . . . . . . . . . . 60 4.4.2 Biological Measurements of the Active, Flexible cMEA . 63 4.5 Summary for the Active, Flexible cMEA . . . . . . . . . . . . . . 66 5 The Integrated System for Both Intracellular and Extracellular Neural Recording 67 5.1 System Design for Intracellular and Extracellular Neural Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.1 High-Pass Filter for Extracellular Recording . . . . . . . 70 5.1.2 Design of the Intracellular Recording Path . . . . . . . . 74 5.1.2.1 Input Buffer and Capacitance Compensation Circuitry . . . . . . . . . . . . . . . . . . . . . . 74 5.1.2.2 Subtraction Circuitry Design . . . . . . . . . . . 77 5.1.2.3 Current Injection Circuitry Design . . . . . . . 79 5.2 Measurements of the Extracellular Neural Recording . . . . . . 82 5.2.1 Electrical Tests of the Extracellular Recording Path . . . 84 5.2.2 Biological Measurements of the Extracellular Recording System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3 Measurements of the Intracellular Neural Recording . . . . . . 94 5.3.1 Electrical Tests of the Intracellular Recording Path . . . 94 5.3.1.1 Frequency Responses and the Capacitance Compensation . . . . . . . . . . . . . . . . . . . . . . 94 5.3.1.2 Electrical Tests of the Subtraction Circuitry . . 97 5.3.1.3 Digital-to-Analog Converter (DAC) for Current Injection Circuitry . . . . . . . . . . . . . . . . . 98 5.3.2 Biological Measurements of the Intracellular Recording System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.2.1 Demonstration of the Intracellular Recording by Using the Lateral-Giant (LG) Neurons of Crayfish Nerves . . . . . . . . . . . . . . . . . . 99 5.3.2.2 Demonstration of Current-Clamp Recording . 102 5.4 Summary for the Integrated Intracellular and Extracellular Neural Recording System . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 Conclusions 107 7 Future Prospect 111 References 113

    [1] G. G. Matthews. Neurobiology. [Online]. Available: http://www.
    blackwellpublishing.com/matthews/channel.html
    [2] N. R. Carlson, Foundations of Physiological Psychology. Allyn and Bacon,
    1992.
    [3] Wikipedia. The patch-clamp technique. [Online]. Available: http://en.
    wikipedia.org/wiki/Electrophysiology#The_patch-clamp_technique
    [4] R. R. Harrison, “A versatile integrated circuit for the acquisition of biopotentials,”
    Custom Integrated Circuits Conference, 2007. CICC ’07. IEEE, pp.
    115 –122, 2007.
    [5] A. Lambacher, M. Jenkner, M. Merz, B. Eversmann, R. Kaul, F. Hofmann,
    R. Thewes, and P. Fromherz, “Electrical imaging of neuronal activity by
    multi-transistor-array (MTA) recording at 7.8 mu m resolution,” Appl.
    Phys. A, vol. 79, no. 7, pp. 1607–1611, 2004.
    [6] D. H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y. S. Kim, J. A.
    Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G.
    Omenetto, Y. Huang, K. C. Hwang, M. R. Zakin, B. Litt, and J. A. Rogers,“Dissolvable films of silk fibroin for ultrathin conformal bio-integrated
    electronics,” Nature Materials, vol. 9, no. 6, pp. 511–517, 2010.
    [7] E. Ben-Jacob and Y. Hanein, “Carbon nanotube micro-electrodes for neuronal
    interfacing,” J. Mater. Chem., vol. 18, no. 43, pp. 5181–5186, 2008.
    [8] F. Heer, S. Hafizovic, T. Ugniwenko, U. Frey, B. Roscic, A. Blau, and
    A. Hierlemann, “Using microelectronics technology to communicate
    with living cells,” EMBS 07. 29th Annual International Conference of the
    IEEE, pp. 6081–6084, 2007.
    [9] S. R. Yeh, Y. C. Chen, H. C. Su, T. R. Yew, H. H. Kao, Y. T. Lee, T. A. Liu,
    H. Chen, Y. C. Chang, P. Chang, and H. Chen, “Interfacing Neurons both
    Extracellularly and Intracellularly Using Carbon - Nanotube Probes with
    Long-Term Endurance,” Langmuir, vol. 25, no. 13, pp. 7718–7724, 2009.
    [10] L. Wong, S. Hossain, A. Ta, J. Edvinsson, D. Rivas, and H. Naas, “A
    very low-power cmos mixed-signal ic for implantable pacemaker applications,”
    Solid-State Circuits, IEEE Journal of, vol. 39, no. 12, pp. 2446 –
    2456, dec. 2004.
    [11] A. Benabid, “Deep brain stimulation for Parkinson’s disease,” Current
    Opinion in Neurobiology, vol. 13, no. 6, pp. 696–706, 2003.
    [12] M. Jahanshahi, C. Ardouin, R. Brown, J. Rothwell, J. Obeso, A. Albanese,
    M. Rodriguez-Oroz, E. Moro, A. Benabid, P. Pollak, and P. Limousin-
    Dowsey, “The impact of deep brain stimulation on executive function in
    Parkinson’s disease,” Brain, vol. 123, no. Part 6, pp. 1142–1154, 2000.
    [13] J. Georgiou and C. Toumazou, “A 126-mw cochlear chip for a totally
    implantable system,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 2,
    pp. 430 – 443, feb. 2005.
    [14] P. Bhatti and K. Wise, “A 32-site 4-channel high-density electrode array
    for a cochlear prosthesis,” Solid-State Circuits, IEEE Journal of, vol. 41,
    no. 12, pp. 2965 –2973, 2006.
    [15] W. Liu, K. Vichienchom, M. Clements, S. DeMarco, C. Hughes,
    E. McGucken, M. Humayun, E. De Juan, J. Weiland, and R. Greenberg,
    “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,”
    Solid-State Circuits, IEEE Journal of, vol. 35, no. 10, pp. 1487 –1497, oct
    2000.
    [16] M. Sivaprakasam, W. Liu, M. Humayun, and J. Weiland, “A variable
    range bi-phasic current stimulus driver circuitry for an implantable retinal
    prosthetic device,” Solid-State Circuits, IEEE Journal of, vol. 40, no. 3,
    pp. 763 – 771, 2005.
    [17] V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi,
    G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates
    boost neuronal electrical signaling,” Nano Lett., vol. 5, no. 6, pp. 1107–
    1110, 2005.
    [18] A. Hodgkin and A. Huxley, “A quantitative description of membrane
    current and its application to conduction and excitation in nerve,” Journal
    of Physiology-London, vol. 117, no. 4, pp. 500–544, 1952.
    [19] P. C. Silva, “Intracellular recording with low-power low-noise CMOS
    voltage and current clamp circuits,” Master’s thesis, Electrical Engineering,
    North Carolina State University, Raleigh, North Carolina, 2007.
    [20] P. Weerakoon, E. Culurciello, Y. Yang, J. Santos-Sacchi, P. J. Kindlmann,
    and F. J. Sigworth, “Patch-clamp amplifiers on a chip,” J. Neurosci. Methods,
    vol. 192, no. 2, pp. 187–192, 2010.
    [21] F. Heer, S. Hafizovic, W. Franks, A. Blau, C. Ziegler, and A. Hierlemann,
    “Cmos microelectrode array for bidirectional interaction with neuronal
    networks,” Solid-State Circuits, IEEE Journal of, vol. 41, no. 7, pp. 1620
    –1629, 2006.
    [22] M. A. Lebedev and M. A. L. Nicolelis, “Brain-machine interfaces: past,
    present and future,” Trends Neurosci., vol. 29, no. 9, pp. 536–546, 2006.
    [23] J. P. Donoghue, “Bridging the Brain to the World: A Perspective on Neural
    Interface Systems,” Neuron, vol. 60, no. 3, pp. 511–521, 2008.
    [24] C. Nordhausen, E. Maynard, and R. Normann, “Single unit recording
    capabilities of a 100 microelectrode array,” Brain Research, vol. 726, no.
    1-2, pp. 129–140, 1996.
    [25] R. H. Olsson and K. D. Wise, “A three-dimensional neural recording microsystem
    with implantable data compression circuitry,” Solid-State Circuits,
    IEEE Journal of, vol. 40, no. 12, pp. 2796 – 2804, 2005.
    [26] C. W. Lin, Y. T. Lee, C. W. Chang, W. L. Hsu, Y. C. Chang, and W. Fang,
    “Novel glass microprobe arrays for neural recording,” Biosens. Bioelectron.,
    vol. 25, no. 2, pp. 475–481, 2009.
    [27] B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow,
    B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl,
    K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, and
    R. Thewes, “A 128 times; 128 cmos biosensor array for extracellular
    recording of neural activity,” Solid-State Circuits, IEEE Journal of, vol. 38,
    no. 12, pp. 2306 – 2317, 2003.
    [28] C. H. Chang, S. R. Chang, J. S. Lin, Y. T. Lee, S. R. Yeh, and H. Chen,
    “A CMOS neuroelectronic interface based on two-dimensional transistor
    arrays with monolithically-integrated circuitry,” Biosens. Bioelectron.,
    vol. 24, no. 6, pp. 1757–1764, 2009.
    [29] T. Pistohl, T. Ball, A. Schulze-Bonhage, A. Aertsen, and C. Mehring, “Prediction
    of arm movement trajectories from ECoG-recordings in humans,”
    J. Neurosci. Methods, vol. 167, no. 1, pp. 105–114, 2008.
    [30] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and
    K. Najafi, “Microelectrodes, microelectronics, and implantable neural microsystems,”
    Proceedings of the IEEE, vol. 96, no. 7, pp. 1184 –1202, 2008.
    [31] G. Loeb, R. Peck, and J. Martyniuk, “Toward the ultimate metal microelectrode,”
    J. Neurosci. Methods, vol. 63, no. 1-2, pp. 175–183, 1995.
    [32] S. F. Cogan, A. A. Guzelian, W. F. Agnew, T. G. H. Yuen, and D. B.
    McCreery, “Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation,” J. Neurosci. Methods, vol. 137, no. 2,
    pp. 141–150, 2004.
    [33] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob,
    and Y. Hanein, “Electro-chemical and biological properties of carbon
    nanotube based multi-electrode arrays,” Nanotechnology, vol. 18, no. 3,
    p. 035201, 2007.
    [34] M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi,
    J. R. Wicksted, and N. A. Kotov, “Stimulation of neural cells by
    lateral layer-by-layer films of single-walled currents in conductive carbon
    nanotubes,” Adv. Mater., vol. 18, no. 22, pp. 2975–2979, 2006.
    [35] E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi, and G. W.
    Gross, “Carbon nanotube coating improves neuronal recordings,” Nature
    Nanotech., vol. 3, no. 7, pp. 434–439, 2008.
    [36] A. Mazzatenta, M. Giugliano, S. Campidelli, L. Gambazzi, L. Businaro,
    H. Markram, M. Prato, and L. Ballerini, “Interfacing neurons with carbon
    nanotubes: Electrical signal transfer and synaptic stimulation in cultured
    brain circuits,” J. Neurosci., vol. 27, no. 26, pp. 6931–6936, 2007.
    [37] T. D. B. Nguyen-Vu, H. Chen, A. M. Cassell, R. Andrews, M. Meyyappan,
    and J. Li, “Vertically aligned carbon nanofiber arrays: An advance toward
    electrical-neural interfaces,” Small, vol. 2, no. 1, pp. 89–94, 2006.
    [38] C. Y.Wang, T. H. Chen, S. C. Chang, T. S. Chin, and S. Y. Cheng, “Flexible
    field emitter made of carbon nanotubes microwave welded onto polymer
    substrates,” Appl. Phys. Lett., vol. 90, no. 10, p. 103111, 2007.
    [39] S. H. Hur, O. O. Park, and J. A. Rogers, “Extreme bendability of singlewalled
    carbon nanotube networks transferred from high-temperature
    growth substrates to plastic and their use in thin-film transistors,” Appl.
    Phys. Lett., vol. 86, no. 24, p. 243502, 2005.
    [40] C. M. Lin, Y. T. Lee, S. R. Yeh, andW. L. Fang, “Flexible carbon nanotubes
    electrode for neural recording,” Biosens. Bioelectron., vol. 24, no. 9, pp.
    2791–2797, 2009.
    [41] M. Chen, C. M. Chen, S. C. Shi, and C. F. Chen, “Low-temperature synthesis
    multiwalled carbon nanotubes by microwave plasma chemical vapor
    deposition using CH4-CO2 gas mixture,” JJAP, vol. 42, no. 2A, pp.
    614–619, 2003.
    [42] R. Harrison, R. Kier, A. Leonardo, H. Fotowat, R. Chan, and F. Gabbiani,
    “A wireless neural/emg telemetry system for freely moving insects,” in
    Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
    on, 2010, pp. 2940 –2943.
    [43] T. D. Halbig, W. Tse, P. G. Frisina, B. R. Baker, E. Hollander, H. Shapiro,
    M. Tagliati, W. C. Koller, and C. W. Olanow, “Subthalamic deep brain
    stimulation and impulse control in Parkinson’s disease,” European Journal
    of Neurology, vol. 16, no. 4, pp. 493–497, 2009.
    [44] T. Seese, H. Harasaki, G. Saidel, and C. Davies, “Characterization of tissue
    morphology, angiogenesis, and temperature in the adaptive response
    of muscle tissue to chronic heating,” Laboratory Investigation, vol. 78,
    no. 12, pp. 1553–1562, 1998.
    [45] K. Sohee, P. Tathireddy, R. Normann, and F. Solzbacher, “Thermal impact
    of an active 3-d microelectrode array implanted in the brain,” Neural
    Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 15, no. 4,
    pp. 493 –501, 2007.
    [46] M. K. Yeh, N. H. Tai, and J. H. Liu, “Mechanical behavior of phenolicbased
    composites reinforced with multi-walled carbon nanotubes,” Carbon,
    vol. 44, no. 1, pp. 1–9, 2006.
    [47] K. Wang, H. A. Fishman, H. Dai, and J. S. Harris, “Neural stimulation
    with a carbon nanotube microelectrode array,” Nano Lett., vol. 6, no. 9,
    pp. 2043–2048, 2006.
    [48] C. C. Hu, J. H. Su, and T. C. Wen, “Modification of multi-walled carbon
    nanotubes for electric double-layer capacitors: Tube opening and surface
    functionalization,” Journal of Physics and Chemistry of Solids, vol. 68, no. 12,
    pp. 2353–2362, 2007.
    [49] H. L. Hsu, I. J. Teng, Y. C. Chen, W. L. Hsu, Y. T. Lee, S. J. Yen, H. C.
    Su, S. R. Yeh, H. Chen, and T. R. Yew, “Flexible UV-Ozone-Modified Carbon
    Nanotube Electrodes for Neuronal Recording,” Adv. Mater., vol. 22,
    no. 19, pp. 2177 –2181, 2010.
    [50] G. E. Perlin, A. M. Sodagar, and K. D. Wise, “Neural recording frontend
    designs for fully implantable neuroscience applications and neural
    prosthetic microsystems,” EMBS ’06. 28th Annual International Conference
    of the IEEE, pp. 2982–2985, 2006.
    [51] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2001.
    [52] J. M. Nugent, K. S. V. Santhanam, A. Rubio, and P. M. Ajayan, “Fast
    electron transfer kinetics on multiwalled carbon nanotube microbundle
    electrodes,” Nano Lett., vol. 1, no. 2, pp. 87–91, 2001.
    [53] A. M. Sodagar, K. D. Wise, and K. Najafi, “A fully integrated mixedsignal
    neural processor for implantable multichannel cortical recording,”
    IEEE Trans. Biomed. Eng., vol. 54, no. 6, pp. 1075–1088, 2007.
    [54] A. Lambacher, M. Jenkner, M. Merz, B. Eversmann, R. A. Kaul, F. Hofmann,
    R. Thewes, and P. Fromherz, “Electrical imaging of neuronal activity
    by multi-transistor-array (MTA) recording at 7.8 um resolution,”
    Appl. Phys. A, vol. 79, no. 7, pp. 1607–1611, 2004.
    [55] R. J. Staba, C. L. Wilson, A. Bragin, I. Fried, and J. Engel, “Quantitative
    analysis of high-frequency oscillations (80-500 Hz) recorded in human
    epileptic hippocampus and entorhinal cortex,” J. Neurophysiol., vol. 88,
    no. 4, pp. 1743–1752, 2002.
    [56] G. Schalk, K. J. Miller, N. R. Anderson, J. A. Wilson, M. D. Smyth,
    J. G. Ojemann, D. W. Moran, J. R. Wolpaw, and E. C. Leuthardt, “Twodimensional
    movement control using electrocorticographic signals in humans,”
    J. Neural Eng., vol. 5, no. 1, pp. 75–84, 2008.
    [57] Y. Y. Chen, H. Y. Lai, S. H. Lin, C. W. Cho, W. H. Chao, C. H. Liao,
    S. Tsang, Y. F. Chen, and S. Y. Lin, “Design and fabrication of a polyimidebased
    microelectrode array: Application in neural recording and repeatable
    electrolytic lesion in rat brain,” J. Neurosci. Methods, vol. 182, no. 1,
    pp. 6–16, 2009.
    [58] S. Suner, M. Fellows, C. Vargas-Irwin, G. Nakata, and J. Donoghue, “Reliability
    of signals from a chronically implanted, silicon-based electrode
    array in non-human primate primary motor cortex,” IEEE Transactions on
    Neural Systems and Rehabilitation Engineering, vol. 13, no. 4, pp. 524–541,
    2005.
    [59] R. Fried and C. Enz, “Simple and accurate voltage adder/subtracter,”
    Electronics Letters, vol. 33, no. 11, pp. 944–945, 1997.
    [60] T. Delbruck and P. Lichtsteiner, “Fully programmable bias current generator
    with 24 bit resolution per bias,” in Circuits and Systems, 2006. ISCAS
    2006. Proceedings. 2006 IEEE International Symposium on, 2006, p. 2852.
    [61] Y. C. Chen, H. L. Hsu, Y. T. Lee, H. C. Su, S. J. Yen, C. H. Chen, W. L.
    Hsu, T. R. Yew, S. R. Yeh, D. J. Yao, Y. C. Chang, and H. Chen, “An
    active, flexible carbon nanotube microelectrode array for recording electrocorticograms,”
    Journal of Neural Eng., vol. 8, no. 3, 2011.
    [62] M. Steyaert, W. Sansen, and Z. Chang, “A Micropower low-noise monolithic
    instrumentation amplifier for medical purposes,” Solid-State Circuits,
    IEEE Journal of, vol. 22, no. 6, pp. 1163–1168, 1987.
    [63] V. Majidzadeh, A. Schmid, and Y. Leblebici, “Energy efficient low-noise
    neural recording amplifier with enhanced noise efficiency factor,” IEEE
    Transactions on Biomedical Circuits and Systems, vol. 5, no. 3, pp. 262–271,
    2011.
    [64] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable
    Biomedical Sensor Interface Chip,” Solid-State Circuits, IEEE
    Journal of, vol. 44, no. 4, pp. 1067 –1077, 2009.
    [65] T. Denison, K. Consoer, W. Santa, A. T. Avestruz, J. Cooley, and A. Kelly,
    “A 2 mW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for
    Chronic Measurement of Neural Field Potentials,” Solid-State Circuits,
    IEEE Journal of, vol. 42, no. 12, pp. 2934 –2945, 2007.
    [66] M. Gruhn and W. Rathmayer, “An implantable electrode design for both
    chronic in vivo nerve recording and axon stimulation in freely behaving
    crayfish,” Journal of Neurosci. Methods, vol. 118, no. 1, pp. 33–40, 2002.
    [67] R. Metherate, C. Cox, and J. Ashe, “Cellular bases of neocortical activation
    - modulation of neural oscillations by the nucleus basalis and
    endogenous acetylcholine,” Journal of Neuroscience, vol. 12, no. 12, pp.
    4701–4711, 1992.
    [68] H. Pape and D. Mccormick, “Noradrenaline and serotonin selectively
    modulate thalamic burst firing by enhancing a hyperpolarizationactivated
    cation current,” Nature, vol. 340, no. 6236, pp. 715–718, 1989.
    [69] P. Magill, A. Sharott, J. Bolam, and P. Brown, “Brain state-dependency of
    coherent oscillatory activity in the cerebral cortex and basal ganglia of
    the rat,” Journal of Neurophysiology, vol. 92, no. 4, pp. 2122–2136, 2004.
    [70] M. Sekerli, C. Del Negro, R. Lee, and R. Butera, “Estimating action potential
    thresholds from neuronal time-series: new metrics and evaluation of methodologies,” Biomedical Engineering, IEEE Transactions on, vol. 51,
    no. 9, pp. 1665 –1672, 2004.
    [71] P. Weerakoon, F. Sigworth, and E. Culurciello, “Integrated patch-clamp
    biosensor for high-density screening of cell conductance,” Electronics Letters,
    vol. 44, no. 2, pp. 81–82, 2008.
    [72] H. C. Su, C. M. Lin, S. J. Yen, Y. C. Chen, C. H. Chen, S. R. Yeh, W. Fang,
    H. Chen, D. J. Yao, Y. C. Chang, and T. R. Yew, “A cone-shaped 3d carbon
    nanotube probe for neural recording,” Biosnesors & Bioelectronics, vol. 26,
    no. 1, pp. 220–227, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE