研究生: |
蘇大舜 Su, Ta Shun |
---|---|
論文名稱: |
果蠅空間方向感的神經迴路機制 The neural circuit mechanism of spatial orientation in fruit flies |
指導教授: |
羅中泉
Lo, Chung-Chuan |
口試委員: |
江安世
施奇廷 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 空間記憶 、方位記憶 、工作記憶 、吸引子網路 、復發網路 、果蠅 、橢圓體 、前腦橋 、中央複合體 |
外文關鍵詞: | spatial memory, orientation memory, working memory, attractor networks, recurrent networks, drosophila, ellipsoid body, protocerebral bridge, central complex |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當動物進行目標導向的動作時,需要藉由角度路徑積分來維持空間中的方位,近期研究
發現果蠅的橢圓體 (ellipsoid body, EB) 有著能夠維持自身空間方位的功能,但詳細的神經迴路
以及工作機制仍然不明。於本研究中,我們跟據近期有關中央複合體 (central complex) 的解
剖學研究建立了 EB 與 protocerebral bridge (PB)的神經迴路模型,該模型是由四種神經類組
成兩個耦合的復發迴路,我們的分析發現其中一個 C 環復發迴路可以藉由對稱環形成很強的局
部回饋;而另一個 P 環復發迴路則是有著非對稱環。經電腦模擬展示兩個環迴路的相異的功能,
C 環迴路能夠維持穩定的活性區域 (activity bump) 並表示著顯著視覺記號的方位,就算視覺記
號消失後依然維持著;而 P 環迴路能夠在沒有視覺記號下經由 PB 接收半側的刺激來偏移活性
區域,我們認為 P 環迴路是能夠對角度路徑積分的,而活性區域的偏移表示著果蠅能夠在黑暗
中旋轉身體並維持空間方位。更進一步的神經體 (connectome) 分析說明有著重力感知神經的
聽覺系統可能能夠給予 PB 半側的刺激。該模型重現了數個被觀察到在 EB 的關鍵活動特徵並能
夠提出實驗可試驗的預測,並對細胞如何維持空間方位的資訊並且追蹤提出了新的觀點。
Maintaining spatial orientation when carrying out goal-directed movements
requires an animal to perform angular path integration. Such functionality has been
recently demonstrated in the ellipsoid body (EB) of fruit flies, though the precise circuitry
and underlying mechanisms remain unclear. In the present study, we proposed a
spiking neural circuit model of the EB and the protocerebral bridge(PB) based on recent
anatomical studies of the central complex. Our data-driven model describes two
coupled recurrent circuits formed by four classes of neurons. Our analysis showed that
one recurrent circuit, the C ring, forms strong local feedback with a symmetric ring while
the other recurrent circuit, the P ring, is characterized by an asymmetric ring. Computer
simulations demonstrated distinct functions performed by the two ring circuits. The C
ring circuit was able to sustain a stable activity bump that represents the orientation of a
salient visual cue and the bump persisted after cue offset. The P ring circuit, on the
other hand, shifted the activity bump in the absence of the visual cue when the PB
receives a unilateral input. We argued that P ring circuit is capable of integrating the
angular path and this bump shifting function represents the ability of the fly to maintain
spatial orientation when it rotates in the dark. A further connectome analysis indicated
that the auditory system, which hosts the gravitational sensory neurons, may provide
the unilateral input to the PB. The present model reproduces several key features of the
EB activity and makes experimentally testable predictions, providing new insight into
how spatial orientation is maintained and tracked at the cellular level.
1. Strauss, R. The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12, 633–638 (2002).
2. Neuser, K., Triphan, T., Mronz, M., Poeck, B. & Strauss, R. Analysis of a spatial orientation memory in Drosophila. Nature 453, 1244–1247 (2008).
3. Ofstad, T. A., Zuker, C. S. & Reiser, M. B. Visual place learning in Drosophila melanogaster. Nature 474, 204–207 (2011).
4. Homberg, U. Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct. Dev. 37, 347–362 (2008).
5. Heinze, S. & Homberg, U. Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect. Science 315, 995–997 (2007).
6. Plath, J. A. & Barron, A. B. Current progress in understanding the functions of the insect central complex. Curr. Opin. Insect Sci. 12, 11–18 (2015).
7. Strausfeld, N. J. & Hirth, F. Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. Science 340, 157–161 (2013).
8. Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013).
9. Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).
10. Clandinin, T. R. & Giocomo, L. M. Neuroscience: Internal compass puts flies in their place. Nature 521, 165–166 (2015).
11. Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984).
12. Constantinidis, C. & Wang, X.-J. A Neural Circuit Basis for Spatial Working Memory. The Neuroscientist 10, 553–565 (2004).
13. Wang, X. J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. Off. J. Soc. Neurosci. 19, 9587–9603 (1999).
14. Wang, X.-J. Decision Making in Recurrent Neuronal Circuits. Neuron 60, 215–234 (2008).
15. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).
16. Sharp, P. E., Blair, H. T. & Cho, J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 24, 289–294 (2001).
17. Blair, H. T., Cho, J. & Sharp, P. E. Role of the Lateral Mammillary Nucleus in the Rat Head Direction Circuit: A Combined Single Unit Recording and Lesion Study. Neuron 21, 1387–1397 (1998).
18. Blair, H. T. & Sharp, P. E. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 15, 6260–6270 (1995).
19. Stackman, R. W. & Taube, J. S. Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity. J. Neurosci. 18, 9020–9037 (1998).
20. Goodridge, J. P. & Touretzky, D. S. Modeling Attractor Deformation in the Rodent Head-Direction System. J. Neurophysiol. 83, 3402–3410 (2000).
21. Schultheiss, N. W. & Redish, A. D. The compass within. Nat. Neurosci. 18, 482–483 (2015).
22. Peyrache, A., Lacroix, M. M., Petersen, P. C. & Buzsáki, G. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569–575 (2015).
23. Goodridge, J. P., Dudchenko, P. A., Worboys, K. A., Golob, E. J. & Taube, J. S. Cue control and head direction cells. Behav. Neurosci. 112, 749–761 (1998).
24. Taube, J. S. & Bassett, J. P. Persistent Neural Activity in Head Direction Cells. Cereb. Cortex 13, 1162–1172 (2003).
25. Song, P. & Wang, X.-J. Angular Path Integration by Moving ‘Hill of Activity’: A Spiking Neuron Model without Recurrent Excitation of the Head-Direction System. J. Neurosci. 25, 1002–1014 (2005).
26. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).
27. Redish, A. D., Elga, A. N. & Touretzky, D. S. A coupled attractor model of the rodent head direction system. Netw. Comput. Neural Syst. 7, 671–685 (1996).
28. Stratton, P., Wyeth, G. & Wiles, J. Calibration of the head direction network: a role for symmetric angular head velocity cells. J. Comput. Neurosci. 28, 527–538 (2010).
29. Boucheny, C., Brunel, N. & Arleo, A. A Continuous Attractor Network Model Without Recurrent Excitation: Maintenance and Integration in the Head Direction Cell System. J. Comput. Neurosci. 18, 205–227 (2005).
30. Xie, X., Hahnloser, R. H. R. & Seung, H. S. Double-ring network model of the head-direction system. Phys. Rev. E 66, 041902 (2002).
31. Lin, C.-Y. et al. A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain. Cell Rep. 3, 1739–1753 (2013).
32. Wolff, T., Iyer, N. A. & Rubin, G. M. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015).
33. Shih, C.-T. et al. Connectomics-Based Analysis of Information Flow in the Drosophila Brain. Curr. Biol. 25, 1249–1258 (2015).
34. Kamikouchi, A. et al. The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165–171 (2009).
35. Baker, D. A., Beckingham, K. M. & Armstrong, J. D. Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster. J. Comp. Neurol. 501, 756–764 (2007).
36. Beckingham, K. M., Texada, M. J., Baker, D. A., Munjaal, Ravi & Armstrong, J. D. in (ed. Genetics, B.-A. in) 55, 105–145 (Academic Press, 2005).
37. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons. Neuron 26, 259–271 (2000).
38. Koulakov, A. A., Raghavachari, S., Kepecs, A. & Lisman, J. E. Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002).
39. Young, J. m. & Armstrong, J. d. Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets. J. Comp. Neurol. 518, 1500–1524 (2010).
40. Hanesch, U., Fischbach, K.-F. & Heisenberg, M. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989).
41. Renn, S. C. et al. Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J. Neurobiol. 41, 189–207 (1999).
42. Wu, C.-L. et al. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat. Neurosci. 10, 1578–1586 (2007).
43. Lo, C.-C., Wang, C.-T. & Wang, X.-J. Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition. J. Neurophysiol. jn.00845.2013 (2015). doi:10.1152/jn.00845.2013
44. Wang, C.-T., Lee, C.-T., Wang, X.-J. & Lo, C.-C. Top-Down Modulation on Perceptual Decision with Balanced Inhibition through Feedforward and Feedback Inhibitory Neurons. PLoS ONE 8, e62379 (2013).
45. Douglass, J. K. & Strausfeld, N. J. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc. Res. Tech. 62, 132–150 (2003).
46. Tanaka, N. K., Endo, K. & Ito, K. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J. Comp. Neurol. 520, 4067–4130 (2012).
47. Peters, A. & Payne, B. R. Numerical Relationships between Geniculocortical Afferents and Pyramidal Cell Modules in Cat Primary Visual Cortex. Cereb. Cortex 3, 69–78 (1993).
48. Everling, S., Dorris, M. C., Klein, R. M. & Munoz, D. P. Role of Primate Superior Colliculus in Preparation and Execution of Anti-Saccades and Pro-Saccades. J. Neurosci. 19, 2740–2754 (1999).
49. Everling, S. & Munoz, D. P. Neuronal Correlates for Preparatory Set Associated with Pro-Saccades and Anti-Saccades in the Primate Frontal Eye Field. J. Neurosci. 20, 387–400 (2000).
50. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).