簡易檢索 / 詳目顯示

研究生: 蘇大舜
Su, Ta Shun
論文名稱: 果蠅空間方向感的神經迴路機制
The neural circuit mechanism of spatial orientation in fruit flies
指導教授: 羅中泉
Lo, Chung-Chuan
口試委員: 江安世
施奇廷
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 43
中文關鍵詞: 空間記憶方位記憶工作記憶吸引子網路復發網路果蠅橢圓體前腦橋中央複合體
外文關鍵詞: spatial memory, orientation memory, working memory, attractor networks, recurrent networks, drosophila, ellipsoid body, protocerebral bridge, central complex
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當動物進行目標導向的動作時,需要藉由角度路徑積分來維持空間中的方位,近期研究
    發現果蠅的橢圓體 (ellipsoid body, EB) 有著能夠維持自身空間方位的功能,但詳細的神經迴路
    以及工作機制仍然不明。於本研究中,我們跟據近期有關中央複合體 (central complex) 的解
    剖學研究建立了 EB 與 protocerebral bridge (PB)的神經迴路模型,該模型是由四種神經類組
    成兩個耦合的復發迴路,我們的分析發現其中一個 C 環復發迴路可以藉由對稱環形成很強的局
    部回饋;而另一個 P 環復發迴路則是有著非對稱環。經電腦模擬展示兩個環迴路的相異的功能,
    C 環迴路能夠維持穩定的活性區域 (activity bump) 並表示著顯著視覺記號的方位,就算視覺記
    號消失後依然維持著;而 P 環迴路能夠在沒有視覺記號下經由 PB 接收半側的刺激來偏移活性
    區域,我們認為 P 環迴路是能夠對角度路徑積分的,而活性區域的偏移表示著果蠅能夠在黑暗
    中旋轉身體並維持空間方位。更進一步的神經體 (connectome) 分析說明有著重力感知神經的
    聽覺系統可能能夠給予 PB 半側的刺激。該模型重現了數個被觀察到在 EB 的關鍵活動特徵並能
    夠提出實驗可試驗的預測,並對細胞如何維持空間方位的資訊並且追蹤提出了新的觀點。


    Maintaining spatial orientation when carrying out goal-directed movements
    requires an animal to perform angular path integration. Such functionality has been
    recently demonstrated in the ellipsoid body (EB) of fruit flies, though the precise circuitry
    and underlying mechanisms remain unclear. In the present study, we proposed a
    spiking neural circuit model of the EB and the protocerebral bridge(PB) based on recent
    anatomical studies of the central complex. Our data-driven model describes two
    coupled recurrent circuits formed by four classes of neurons. Our analysis showed that
    one recurrent circuit, the C ring, forms strong local feedback with a symmetric ring while
    the other recurrent circuit, the P ring, is characterized by an asymmetric ring. Computer
    simulations demonstrated distinct functions performed by the two ring circuits. The C
    ring circuit was able to sustain a stable activity bump that represents the orientation of a
    salient visual cue and the bump persisted after cue offset. The P ring circuit, on the
    other hand, shifted the activity bump in the absence of the visual cue when the PB
    receives a unilateral input. We argued that P ring circuit is capable of integrating the
    angular path and this bump shifting function represents the ability of the fly to maintain
    spatial orientation when it rotates in the dark. A further connectome analysis indicated
    that the auditory system, which hosts the gravitational sensory neurons, may provide
    the unilateral input to the PB. The present model reproduces several key features of the
    EB activity and makes experimentally testable predictions, providing new insight into
    how spatial orientation is maintained and tracked at the cellular level.

    簡介...................................................................................................................1 方法...................................................................................................................3 PB 與 EB 的神經解剖學...........................................................................................................3 神經與突觸模型......................................................................................................................5 EB-PB 迴路的神經網路模型...................................................................................................6 空間定位任務..........................................................................................................................7 模擬隨機行走..........................................................................................................................8 計算神經活躍程度................................................................................................................10 計算 EB 的活性區域大小......................................................................................................10 結果.................................................................................................................11 EB-PB 迴路...........................................................................................................................11 新的 EB-PB 迴路表現方式....................................................................................................12 C 環:對稱回饋迴路.............................................................................................................13 P 環:非對稱偏移迴路.........................................................................................................13 C 環迴路的活性區域維持......................................................................................................14 P 環迴路中的活性區域偏移..................................................................................................17 完整 EB-PB 迴路模型的表現................................................................................................20 討論.................................................................................................................22 參考文獻..........................................................................................................26 附錄.................................................................................................................30 A.A.EIP、PEN 與 EIP 類神經的伸入模式.............................................................................30 B.B.完整 EB-PB 迴路的連接矩陣..........................................................................................33 C.C.神經類之間的突觸連結強度..........................................................................................37 D.D.果蠅腦中接收其他 LPU 的強度.....................................................................................38 E.E.活性區域的參數空間......................................................................................................39 翻譯與縮寫......................................................................................................42

    1. Strauss, R. The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12, 633–638 (2002).

    2. Neuser, K., Triphan, T., Mronz, M., Poeck, B. & Strauss, R. Analysis of a spatial orientation memory in Drosophila. Nature 453, 1244–1247 (2008).
    3. Ofstad, T. A., Zuker, C. S. & Reiser, M. B. Visual place learning in Drosophila melanogaster. Nature 474, 204–207 (2011).
    4. Homberg, U. Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct. Dev. 37, 347–362 (2008).
    5. Heinze, S. & Homberg, U. Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect. Science 315, 995–997 (2007).
    6. Plath, J. A. & Barron, A. B. Current progress in understanding the functions of the insect central complex. Curr. Opin. Insect Sci. 12, 11–18 (2015).
    7. Strausfeld, N. J. & Hirth, F. Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. Science 340, 157–161 (2013).
    8. Seelig, J. D. & Jayaraman, V. Feature detection and orientation tuning in the Drosophila central complex. Nature 503, 262–266 (2013).
    9. Seelig, J. D. & Jayaraman, V. Neural dynamics for landmark orientation and angular path integration. Nature 521, 186–191 (2015).
    10. Clandinin, T. R. & Giocomo, L. M. Neuroscience: Internal compass puts flies in their place. Nature 521, 165–166 (2015).
    11. Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984).
    12. Constantinidis, C. & Wang, X.-J. A Neural Circuit Basis for Spatial Working Memory. The Neuroscientist 10, 553–565 (2004).
    13. Wang, X. J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. Off. J. Soc. Neurosci. 19, 9587–9603 (1999).
    14. Wang, X.-J. Decision Making in Recurrent Neuronal Circuits. Neuron 60, 215–234 (2008).
    15. Wang, X.-J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).
    16. Sharp, P. E., Blair, H. T. & Cho, J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 24, 289–294 (2001).
    17. Blair, H. T., Cho, J. & Sharp, P. E. Role of the Lateral Mammillary Nucleus in the Rat Head Direction Circuit: A Combined Single Unit Recording and Lesion Study. Neuron 21, 1387–1397 (1998).
    18. Blair, H. T. & Sharp, P. E. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 15, 6260–6270 (1995).
    19. Stackman, R. W. & Taube, J. S. Firing Properties of Rat Lateral Mammillary Single Units: Head Direction, Head Pitch, and Angular Head Velocity. J. Neurosci. 18, 9020–9037 (1998).
    20. Goodridge, J. P. & Touretzky, D. S. Modeling Attractor Deformation in the Rodent Head-Direction System. J. Neurophysiol. 83, 3402–3410 (2000).
    21. Schultheiss, N. W. & Redish, A. D. The compass within. Nat. Neurosci. 18, 482–483 (2015).
    22. Peyrache, A., Lacroix, M. M., Petersen, P. C. & Buzsáki, G. Internally organized mechanisms of the head direction sense. Nat. Neurosci. 18, 569–575 (2015).
    23. Goodridge, J. P., Dudchenko, P. A., Worboys, K. A., Golob, E. J. & Taube, J. S. Cue control and head direction cells. Behav. Neurosci. 112, 749–761 (1998).
    24. Taube, J. S. & Bassett, J. P. Persistent Neural Activity in Head Direction Cells. Cereb. Cortex 13, 1162–1172 (2003).
    25. Song, P. & Wang, X.-J. Angular Path Integration by Moving ‘Hill of Activity’: A Spiking Neuron Model without Recurrent Excitation of the Head-Direction System. J. Neurosci. 25, 1002–1014 (2005).
    26. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).
    27. Redish, A. D., Elga, A. N. & Touretzky, D. S. A coupled attractor model of the rodent head direction system. Netw. Comput. Neural Syst. 7, 671–685 (1996).
    28. Stratton, P., Wyeth, G. & Wiles, J. Calibration of the head direction network: a role for symmetric angular head velocity cells. J. Comput. Neurosci. 28, 527–538 (2010).
    29. Boucheny, C., Brunel, N. & Arleo, A. A Continuous Attractor Network Model Without Recurrent Excitation: Maintenance and Integration in the Head Direction Cell System. J. Comput. Neurosci. 18, 205–227 (2005).
    30. Xie, X., Hahnloser, R. H. R. & Seung, H. S. Double-ring network model of the head-direction system. Phys. Rev. E 66, 041902 (2002).
    31. Lin, C.-Y. et al. A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain. Cell Rep. 3, 1739–1753 (2013).
    32. Wolff, T., Iyer, N. A. & Rubin, G. M. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523, 997–1037 (2015).
    33. Shih, C.-T. et al. Connectomics-Based Analysis of Information Flow in the Drosophila Brain. Curr. Biol. 25, 1249–1258 (2015).
    34. Kamikouchi, A. et al. The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165–171 (2009).
    35. Baker, D. A., Beckingham, K. M. & Armstrong, J. D. Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster. J. Comp. Neurol. 501, 756–764 (2007).
    36. Beckingham, K. M., Texada, M. J., Baker, D. A., Munjaal, Ravi & Armstrong, J. D. in (ed. Genetics, B.-A. in) 55, 105–145 (Academic Press, 2005).
    37. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons. Neuron 26, 259–271 (2000).
    38. Koulakov, A. A., Raghavachari, S., Kepecs, A. & Lisman, J. E. Model for a robust neural integrator. Nat. Neurosci. 5, 775–782 (2002).
    39. Young, J. m. & Armstrong, J. d. Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets. J. Comp. Neurol. 518, 1500–1524 (2010).
    40. Hanesch, U., Fischbach, K.-F. & Heisenberg, M. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343–366 (1989).
    41. Renn, S. C. et al. Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J. Neurobiol. 41, 189–207 (1999).
    42. Wu, C.-L. et al. Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat. Neurosci. 10, 1578–1586 (2007).
    43. Lo, C.-C., Wang, C.-T. & Wang, X.-J. Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition. J. Neurophysiol. jn.00845.2013 (2015). doi:10.1152/jn.00845.2013
    44. Wang, C.-T., Lee, C.-T., Wang, X.-J. & Lo, C.-C. Top-Down Modulation on Perceptual Decision with Balanced Inhibition through Feedforward and Feedback Inhibitory Neurons. PLoS ONE 8, e62379 (2013).
    45. Douglass, J. K. & Strausfeld, N. J. Anatomical organization of retinotopic motion-sensitive pathways in the optic lobes of flies. Microsc. Res. Tech. 62, 132–150 (2003).
    46. Tanaka, N. K., Endo, K. & Ito, K. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J. Comp. Neurol. 520, 4067–4130 (2012).
    47. Peters, A. & Payne, B. R. Numerical Relationships between Geniculocortical Afferents and Pyramidal Cell Modules in Cat Primary Visual Cortex. Cereb. Cortex 3, 69–78 (1993).
    48. Everling, S., Dorris, M. C., Klein, R. M. & Munoz, D. P. Role of Primate Superior Colliculus in Preparation and Execution of Anti-Saccades and Pro-Saccades. J. Neurosci. 19, 2740–2754 (1999).
    49. Everling, S. & Munoz, D. P. Neuronal Correlates for Preparatory Set Associated with Pro-Saccades and Anti-Saccades in the Primate Frontal Eye Field. J. Neurosci. 20, 387–400 (2000).
    50. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE