研究生: |
李怡禛 |
---|---|
論文名稱: |
以斑馬魚為模式動物研究klf4a及agr2基因在杯狀細胞的功能 Evaluating the functions of klf4a and agr2 in zebrafish goblet cell |
指導教授: | 周姽嫄 |
口試委員: |
林立元
喻秋華 胡清華 黃聲蘋 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 斑馬魚 、klf4a 、agr2 、杯狀細胞 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
老鼠krüppel-like factor 4 (Klf4)是一個具有鋅手指的轉錄因子並且為大腸內杯狀細胞最終分化所必需。然而,在Klf4剃除小鼠或有條件刪除Klf4小鼠的研究顯示,Klf4於兩者的研究在胃上皮細胞增生呈現不同結果。我們利用斑馬魚為模式生物以了解Klf4在腸道細胞增生與分化所扮演的角色。
藉由反義核苷酸抑制基因表現,我們鑑定出與哺乳動物同源的klf4a之功能。經由胺基酸序列比較分析,斑馬魚Klf4a和人類及小鼠的Klf4的胺基酸序列具有高度相似性。於系統發生分析發現,斑馬魚Klf4a被歸類於和人類及小鼠同一演化分支上。斑馬魚、人類及小鼠的Klf4分別位於21號染色體、9號染色體及4號染色體。染色體保守性分析結果顯示,Klf4所座落的染色體於不同物種間呈現高度的保守性。在這個研究中,發現Klf4a在斑馬魚有許多功能,包含抑制腸道細胞增生、幫助腸道杯狀細胞分化及腸道吸收型細胞的最終分化。此外,klf4a的表現和脊椎動物一樣,皆是受到Notch訊號傳遞所抑制。
另一方面,為了瞭解斑馬魚agr2的功能,我們轉殖出由6Kb的agr2啟動子所調控綠螢光蛋白表現之斑馬魚品系。利用流式細胞儀收集發育到24、48、72及96小時的綠螢光細胞。由這些agr2表現與否的細胞中,萃取出RNA並藉由次世代定序分析呈現基因表現量之差異,可得1434個基因在agr2表現細胞中高量表現,另外有1990個基因在agr2表現細胞中反而表現下降。除此之外,更利用不同生物資訊分析法包含基因本體(GO)及綜合網路分析(IPA)去分析這些在agr2表現細胞的基因。結果顯示Agr2不只為蛋白質雙硫鍵異構酶,並且為免疫系統中的一個重要分子。利用IPA分析法發現次世代定序所得基因中,有一部分基因和黏液相關,另有一部分基因則和黏液完全不相關。我們選殖出部分基因並經由全覆式雜交染色法,發現大部分選殖的基因皆於中樞神經系統、胸鰭及咽弧中表現。
Alvers, A.L., Ryan, S., Scherz, P.J., Huisken, J., Bagnat, M., 2014. Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling. Development 141, 1110-1119.
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G., 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25, 25-29.
Bagnat, M., Cheung, I.D., Mostov, K.E., Stainier, D.Y., 2007. Genetic control of single lumen formation in the zebrafish gut. Nature cell biology 9, 954-960.
Barker, N., Clevers, H., 2010. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681-1696.
Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., Clevers, H., 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007.
Bastide, P., Darido, C., Pannequin, J., Kist, R., Robine, S., Marty-Double, C., Bibeau, F., Scherer, G., Joubert, D., Hollande, F., Blache, P., Jay, P., 2007. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. The Journal of cell biology 178, 635-648.
Bjerknes, M., Cheng, H., 2006. Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Developmental biology 300, 722-735.
Bjerknes, M., Cheng, H., 2010. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Developmental biology 345, 49-63.
Chen, X., Johns, D.C., Geiman, D.E., Marban, E., Dang, D.T., Hamlin, G., Sun, R., Yang, V.W., 2001. Kruppel-like factor 4 (gut-enriched Kruppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J Biol Chem 276, 30423-30428.
Chen, X., Whitney, E.M., Gao, S.Y., Yang, V.W., 2003. Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J Mol Biol 326, 665-677.
Chen, Y.C., Lu, Y.F., Li, I.C., Hwang, S.P., 2012. Zebrafish Agr2 is required for terminal differentiation of intestinal goblet cells. PloS one 7, e34408.
Chen, Y.H., Lu, Y.F., Ko, T.Y., Tsai, M.Y., Lin, C.Y., Lin, C.C., Hwang, S.P., 2009. Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Dev Dyn 238, 1021-1032.
Cheng, P.Y., Lin, C.C., Wu, C.S., Lu, Y.F., Lin, C.Y., Chung, C.C., Chu, C.Y., Huang, C.J., Tsai, C.Y., Korzh, S., Wu, J.L., Hwang, S.P., 2008. Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development 135, 941-952.
Crosnier, C., Vargesson, N., Gschmeissner, S., Ariza-McNaughton, L., Morrison, A., Lewis, J., 2005. Delta-Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132, 1093-1104.
Dang, D.T., Bachman, K.E., Mahatan, C.S., Dang, L.H., Giardiello, F.M., Yang, V.W., 2000. Decreased expression of the gut-enriched Kruppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients. FEBS Lett 476, 203-207.
Dang, D.T., Chen, X., Feng, J., Torbenson, M., Dang, L.H., Yang, V.W., 2003. Overexpression of Kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene 22, 3424-3430.
Dumartin, L., Whiteman, H.J., Weeks, M.E., Hariharan, D., Dmitrovic, B., Iacobuzio-Donahue, C.A., Brentnall, T.A., Bronner, M.P., Feakins, R.M., Timms, J.F., Brennan, C., Lemoine, N.R., Crnogorac-Jurcevic, T., 2011. AGR2 is a novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Cancer research 71, 7091-7102.
Evans, P.M., Zhang, W., Chen, X., Yang, J., Bhakat, K.K., Liu, C., 2007. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem 282, 33994-34002.
Flasse, L.C., Stern, D.G., Pirson, J.L., Manfroid, I., Peers, B., Voz, M.L., 2013. The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Developmental biology 376, 187-197.
Foster, K.W., Ren, S., Louro, I.D., Lobo-Ruppert, S.M., McKie-Bell, P., Grizzle, W., Hayes, M.R., Broker, T.R., Chow, L.T., Ruppert, J.M., 1999. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ 10, 423-434.
Fre, S., Huyghe, M., Mourikis, P., Robine, S., Louvard, D., Artavanis-Tsakonas, S., 2005. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435, 964-968.
Gardiner, M.R., Daggett, D.F., Zon, L.I., Perkins, A.C., 2005. Zebrafish KLF4 is essential for anterior mesendoderm/pre-polster differentiation and hatching. Dev Dyn 234, 992-996.
Garrett-Sinha, L.A., Eberspaecher, H., Seldin, M.F., de Crombrugghe, B., 1996. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem 271, 31384-31390.
Gerbe, F., van Es, J.H., Makrini, L., Brulin, B., Mellitzer, G., Robine, S., Romagnolo, B., Shroyer, N.F., Bourgaux, J.F., Pignodel, C., Clevers, H., Jay, P., 2011. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. The Journal of cell biology 192, 767-780.
Ghaleb, A.M., Aggarwal, G., Bialkowska, A.B., Nandan, M.O., Yang, V.W., 2008. Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol Cancer Res 6, 1920-1927.
Ghaleb, A.M., McConnell, B.B., Kaestner, K.H., Yang, V.W., 2010. Altered Intestinal Epithelial Homeostasis in Mice with Intestine-Specific Deletion of the Kruppel-Like Factor 4 Gene. Dev Biol.
Gregorieff, A., Stange, D.E., Kujala, P., Begthel, H., van den Born, M., Korving, J., Peters, P.J., Clevers, H., 2009. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 137, 1333-1345 e1331-1333.
Hinnebusch, B.F., Siddique, A., Henderson, J.W., Malo, M.S., Zhang, W., Athaide, C.P., Abedrapo, M.A., Chen, X., Yang, V.W., Hodin, R.A., 2004. Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor. Am J Physiol Gastrointest Liver Physiol 286, G23-30.
Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T., Jan, Y., Stainier, D.Y., Abdelilah-Seyfried, S., 2001. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Current biology : CB 11, 1492-1502.
Ireland, H., Kemp, R., Houghton, C., Howard, L., Clarke, A.R., Sansom, O.J., Winton, D.J., 2004. Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology 126, 1236-1246.
Karam, S.M., 1999. Lineage commitment and maturation of epithelial cells in the gut. Frontiers in bioscience : a journal and virtual library 4, D286-298.
Kaser, A., Lee, A.H., Franke, A., Glickman, J.N., Zeissig, S., Tilg, H., Nieuwenhuis, E.E., Higgins, D.E., Schreiber, S., Glimcher, L.H., Blumberg, R.S., 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743-756.
Katz, J.P., Perreault, N., Goldstein, B.G., Actman, L., McNally, S.R., Silberg, D.G., Furth, E.E., Kaestner, K.H., 2005. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128, 935-945.
Katz, J.P., Perreault, N., Goldstein, B.G., Lee, C.S., Labosky, P.A., Yang, V.W., Kaestner, K.H., 2002. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619-2628.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310.
Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P.J., Clevers, H., 1998. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature genetics 19, 379-383.
Lee, H.J., Hong, C.Y., Jin, C.J., Kim, M.H., Lee, Y.K., Nguyen-Pham, T.N., Lee, H., Park, B.C., Chung, I.J., Kim, H.J., Lee, J.J., 2012. Identification of novel HLA-A*0201-restricted epitopes from anterior gradient-2 as a tumor-associated antigen against colorectal cancer. Cellular & molecular immunology 9, 175-183.
Lieschke, G.J., Currie, P.D., 2007. Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8, 353-367.
Liu, D.W., Tsai, S.M., Lin, B.F., Jiang, Y.J., Wang, W.P., 2013. Fibroblast growth factor receptor 2c signaling is required for intestinal cell differentiation in zebrafish. PloS one 8, e58310.
Liuzzi, J.P., Guo, L., Chang, S.M., Cousins, R.J., 2009. Kruppel-like factor 4 regulates adaptive expression of the zinc transporter Zip4 in mouse small intestine. Am J Physiol Gastrointest Liver Physiol 296, G517-523.
Mizoguchi, T., Izawa, T., Kuroiwa, A., Kikuchi, Y., 2006. Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Developmental biology 300, 612-622.
Muncan, V., Faro, A., Haramis, A.P., Hurlstone, A.F., Wienholds, E., van Es, J., Korving, J., Begthel, H., Zivkovic, D., Clevers, H., 2007. T-cell factor 4 (Tcf7l2) maintains proliferative compartments in zebrafish intestine. EMBO reports 8, 966-973.
Nair, S., Schilling, T.F., 2008. Chemokine signaling controls endodermal migration during zebrafish gastrulation. Science 322, 89-92.
Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y., Heath, J.K., 2005. Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Developmental biology 286, 114-135.
Noah, T.K., Donahue, B., Shroyer, N.F., 2011. Intestinal development and differentiation. Experimental Cell Research 317, 2702-2710.
Park, S.W., Zhen, G., Verhaeghe, C., Nakagami, Y., Nguyenvu, L.T., Barczak, A.J., Killeen, N., Erle, D.J., 2009. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proceedings of the National Academy of Sciences of the United States of America 106, 6950-6955.
Pearson, R., Fleetwood, J., Eaton, S., Crossley, M., Bao, S., 2008. Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol 40, 1996-2001.
Poulain, M., Furthauer, M., Thisse, B., Thisse, C., Lepage, T., 2006. Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development 133, 2189-2200.
Ro, H., Dawid, I.B., 2009. Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like. Nat Cell Biol 11, 1121-1127.
Rowland, B.D., Bernards, R., Peeper, D.S., 2005. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7, 1074-1082.
Rowland, B.D., Peeper, D.S., 2006. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6, 11-23.
Sancho, E., Batlle, E., Clevers, H., 2003. Live and let die in the intestinal epithelium. Current opinion in cell biology 15, 763-770.
Schroeder, B.W., Verhaeghe, C., Park, S.W., Nguyenvu, L.T., Huang, X., Zhen, G., Erle, D.J., 2012. AGR2 is induced in asthma and promotes allergen-induced mucin overproduction. American journal of respiratory cell and molecular biology 47, 178-185.
Scoville, D.H., Sato, T., He, X.C., Li, L., 2008. Current view: intestinal stem cells and signaling. Gastroenterology 134, 849-864.
Shen, M.M., 2007. Nodal signaling: developmental roles and regulation. Development 134, 1023-1034.
Shih, L.J., Lu, Y.F., Chen, Y.H., Lin, C.C., Chen, J.A., Hwang, S.P., 2007. Characterization of the agr2 gene, a homologue of X. laevis anterior gradient 2, from the zebrafish, Danio rerio. Gene expression patterns : GEP 7, 452-460.
Shroyer, N.F., Wallis, D., Venken, K.J., Bellen, H.J., Zoghbi, H.Y., 2005. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev 19, 2412-2417.
Sturley, S.L., 1995. The Essential Function of Protein-disulfide Isomerase Is to Unscramble Non-native Disulfide Bonds. Journal of Biological Chemistry 270, 28006-28009.
Tang, C.H., Lai, Y.R., Chen, Y.C., Li, C.H., Lu, Y.F., Chen, H.Y., Lien, H.W., Yang, C.H., Huang, C.J., Wang, C.Y., Kao, C.F., Hwang, S.P., 2014. Expression of zebrafish anterior gradient 2 in the semicircular canals and supporting cells of otic vesicle sensory patches is regulated by Sox10. Biochimica et biophysica acta 1839, 425-437.
Van der Sluis, M., De Koning, B.A., De Bruijn, A.C., Velcich, A., Meijerink, J.P., Van Goudoever, J.B., Buller, H.A., Dekker, J., Van Seuningen, I., Renes, I.B., Einerhand, A.W., 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117-129.
VanDussen, K.L., Carulli, A.J., Keeley, T.M., Patel, S.R., Puthoff, B.J., Magness, S.T., Tran, I.T., Maillard, I., Siebel, C., Kolterud, A., Grosse, A.S., Gumucio, D.L., Ernst, S.A., Tsai, Y.H., Dempsey, P.J., Samuelson, L.C., 2012. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139, 488-497.
Verri, T., Kottra, G., Romano, A., Tiso, N., Peric, M., Maffia, M., Boll, M., Argenton, F., Daniel, H., Storelli, C., 2003. Molecular and functional characterisation of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Lett 549, 115-122.
Wei, D., Kanai, M., Huang, S., Xie, K., 2006. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27, 23-31.
Yang, Q., Bermingham, N.A., Finegold, M.J., Zoghbi, H.Y., 2001. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155-2158.
Yoon, H.S., Yang, V.W., 2004. Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem 279, 5035-5041.
Zhang, W., Chen, X., Kato, Y., Evans, P.M., Yuan, S., Yang, J., Rychahou, P.G., Yang, V.W., He, X., Evers, B.M., Liu, C., 2006. Novel cross talk of Kruppel-like factor 4 and beta-catenin regulates normal intestinal homeostasis and tumor repression. Mol Cell Biol 26, 2055-2064.
Zhang, W., Geiman, D.E., Shields, J.M., Dang, D.T., Mahatan, C.S., Kaestner, K.H., Biggs, J.R., Kraft, A.S., Yang, V.W., 2000. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 275, 18391-18398.
Zhao, F., Edwards, R., Dizon, D., Afrasiabi, K., Mastroianni, J.R., Geyfman, M., Ouellette, A.J., Andersen, B., Lipkin, S.M., 2010. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2-/- mice. Developmental biology 338, 270-279.
Zhao, W., Hisamuddin, I.M., Nandan, M.O., Babbin, B.A., Lamb, N.E., Yang, V.W., 2004. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 23, 395-402.
Zheng, H., Pritchard, D.M., Yang, X., Bennett, E., Liu, G., Liu, C., Ai, W., 2009. KLF4 gene expression is inhibited by the notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296, G490-498.
Zheng, W., Rosenstiel, P., Huse, K., Sina, C., Valentonyte, R., Mah, N., Zeitlmann, L., Grosse, J., Ruf, N., Nurnberg, P., Costello, C.M., Onnie, C., Mathew, C., Platzer, M., Schreiber, S., Hampe, J., 2006. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes and immunity 7, 11-18.
Zorn, A.M., Wells, J.M., 2009. Vertebrate endoderm development and organ formation. Annual review of cell and developmental biology 25, 221-251.