簡易檢索 / 詳目顯示

研究生: 楊欣洲
Hsin-Chou Yang
論文名稱: 馬可夫鏈模式與核平滑法在重複捕取實驗上的應用
The Applications of Markov Chain Models and Kernel Smoothing in Capture-Recapture Experiments
指導教授: 趙蓮菊
Anne Chao
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 144
中文關鍵詞: 重複捕取總數估計行為反應個體異質馬可夫鏈核平滑法估計方程式最佳帶寬
外文關鍵詞: capture-recapture, population size estimation, behavior response, individual heterogeneity, Markov chain, kernel smoothing, estimating equation, optimal bandwidth
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要討論在重複捕取實驗 (capture-recapture experiment) 下,母體總數 (population size) 的估計問題。文中分別針對封閉型母體 (closed population) 與開放型母體 (open population),提出參數估計方法及估計性質。
    在封閉型母體中,本文提出以馬可夫鏈模式 (Markov chain model) 來處理影響捕取機率的三個變異來源:行為反應 (behavior response)、時間效果 (time effect) 與個體差異 (individual heterogeneity)。對於行為反應的處理,傳統行為反應模式認為,捕取機率與之前是否被捕有關。有別於傳統行為反應模式,本文提出以馬可夫相關性 (Markovian dependence) 來架構樣本間的相關,認為已知過去捕取歷史下,捕取機率只與前次是否被捕有關。當時間效果也存在時,此時捕取機率為時間的函數,

    可利用非均勻 (nonhomogeneous) 馬可夫鏈同時處理時間效果與行為反應。對於個體差異現象,文中是利用具有隨機效應的捕取機率來解釋,或是透過觀察到的共變量 (covariate) 訊息來估計各動物的捕取機率,分別提出混合效果模式和共變量模式來分析。

    在各模式下,針對主要關心的母體總數以及其他相關參數,提出最大概似估計,並討論其估計性質。文中以兩組資料作為實例,Nichols et al. (1984) 分析的北美田鼠資料與 Otis et al. (1978) 的老鼠資料,說明估計方法的實際應用。同時,為了瞭解所提出估計式的表現,文中採用模擬分析加以探討。透過模擬結果發現,在滿足馬可夫相關性的情形下,馬可夫鏈模式確實可以輔助傳統行為模式,降低估計偏差 (bias) 與均方根誤差(root mean squared error),並且得到滿意的涵蓋率 (coverage)。

    在開放型母體中,本文主要利用核平滑法 (kernel smoothing approach) 來處理長期性重複捕取實驗中,捕取樣本 (sampling occasions) 很多的問題。對於母體不再滿足封閉性的假設,文中分別提出局部常數模式 (local constant model) 和局部多項式模式 (local polynomial model),逐步放鬆封閉性的要求。對於存在動物個體間的異質現象,模式中將動物的捕取機率視為一組來自未知分配的隨機樣本,此分配由前兩階動差 (moment) 決定,透過隨機性來模式化個體差異的影響,並透過結合樣本涵蓋 (sample coverage) 與估計方程式(estimating equation) 的方法,估計母體總數及其他相關參數,同時推廣了 Huggins 與 Yip (1999) 處理時間效果的估計方法和Chao et al. (2001) 處理封閉母體的估計方法。

    對於開放母體總數的變異數估計,除了提出大樣本近似估計外,也介紹如何利用重抽法 (bootstrap method) 的概念來估計變異數,進而得到信賴區間估計。對於核平滑估計中常遇到的最佳帶寬 (optimal bandwidth) 的選取問題,也可利用重抽法來解決,這樣的方法概念上很簡單,電腦計算時間也合理。本部分以香港米埔鳥類保育區的鷦鶯資料,和澳洲南方費雪島上的短尾海鷗資料作為實例,說明所提出的估計方法的實際應用。文中同時藉由一些模擬研究來瞭解核平滑估計式的表現。由模擬分析中發現,在個體異質性真的存在時,所提出的估計方法的確可以改善只考慮時間效果的估計方法,得到較小的均方根誤差。


    第一章 緒論 第二章 封閉型模式 2.1 符號介紹 2.2 文獻回顧 2.3 研究動機 2.4 傳統時間及行為模式 2.5 時間及行為馬可夫鏈模式 2.5.1 均勻馬可夫鏈模式 2.5.2 限制模式 2.5.3 穩定模式 2.5.4 非均勻馬可夫鏈模式 2.6 時間、行為及個體差異模式 2.6.1 混合效果模式一:條件法 2.6.2 混合效果模式二:邊際法 2.6.3 混合效果模式三:共變量模式 2.7 實例分析 2.7.1 實例分析一:北美田鼠資料(沒有共變量) 2.7.2 實例分析二:老鼠資料(有共變量) 2.8 模擬分析 第三章 開放型模式 3.1 符號介紹 3.2 文獻回顧 3.3 研究動機 3.4 局部常數模式 3.4.1 三個未知量的估計 3.4.2 母體總數估計 3.5 局部多項式模式 3.5.1 三個未知量的估計 3.5.2 母體總數估計 3.6 變異數估計與最佳帶寬的決定 3.6.1 變異數與信賴區間的估計 3.6.2 最佳帶寬的決定 3.7 實例分析 3.7.1 實例分析一:灰頭鷦鶯資料 3.7.2 實例分析二:短尾海鷗資料 3.8 模擬分析 第四章 結論與討論 附錄 A 樣本相關性的探討 B 馬可夫鏈之假設檢定 C 局部多項式下的估計方程式

    Alho, J. M. (1990), Logistic Regression in Capture-Recapture Models, Biometrics 46, 623-635.
    Anderson, T. W. and Goodman, L. A. (1957), Statistical Inference about Markov Chains, Annals of Mathematical Statistics 28, 89-110.
    Barker, R. and Fletcher, D. (2001), Special Issue: Estimation of Animal Abundance and Related Parameters, Journal of Agricultural, Biological and Environmental Statistics 6.
    Bartlett, M. S. (1950), The Frequency Goodness of Fit Test for Probability Chains, Proceeding of Cambridge Philosophy Society 47, 86-95.
    Bradley, J. S., Skira, I. J. and Wooller, R. D. (1991), A Long-Term Study of Short-Tailed Shearwaters Puffinus Tenuirostris on Fisher Island, Australia, Ibis 133, 55-61.
    Bunge, J. and Fitzpatrick, M. (1993), Estimating the Number of Species: A Review, Journal of the American Statistical Association 88, 364-373.
    Burnham, K. P. and Overton, W. S. (1978), Estimation of the Size of a Closed Population When Capture Probabilities Vary among Animals, Biometrika 65, 625-633.
    Carothers, A. D. (1973), Capture-Recapture Methods Applied to a Population with Known Parameters, Journal of Animal Ecology 42, 125-146.
    Carothers, A. D. (1979), Quantifying Unequal Catchability and Its Effect on Survival Estimates in an Actual Population, Journal of Animal Ecology 48, 863-869.
    Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998), Local Estimating Equations, Journal of the American Statistical Association 93, 214-227.
    Chao, A. (1987), Estimating the Population Size for Capture-Recapture Data with Unequal Catchability, Biometrics 43, 783-791.
    Chao, A., Lee, S.-M. and Jeng, S.-L. (1992), Estimating Population Size for Capture-Recapture Data When Capture Probabilities Vary by Time and Individual Animal, Biometrics 48, 201-216.
    Chao, A. and Lee, S.-M. (1992), Estimating the Number of Classes via Sample Coverage, Journal of the American Statistical Association 87, 210-217.
    Chao, A., Ma, M.-C. and Yang, M. C. K. (1993), Stopping Rules and Estimation for Recapture Debugging with Unequal Failure Rates, Biometrika 80, 193-201.
    Chao, A. (1998), Capture-Recapture, in Encyclopedia of Biostatistics, Armitage, P. and Colton, T. (Editors), Wiley, New York, 482-486.
    Chao, A. and Tsay, P. K. (1998), A Sample Coverage Approach to Multiple-System Estimation with Application to Census Undercount, Journal of the American Statistical Association 93, 283-293.
    Chao, A., Chu, W. and Hsu, C.-H. (2000), Capture-Recapture When Time and Behavioral Response Affect Capture Probabilities, Biometrics 56, 427-433.
    Chao, A. (2001), An Overview of Closed Capture-Recapture Models, Journal of Agricultural, Biological and Environmental Statistics 6, 158-175.
    Chao. A., Yip, P, Lee, S.-M. and Chu, W. (2001), Population Size Estimation Based on Estimating Functions for Closed Capture-Recapture Models, Journal of Statistical Planning and Inference 92, 213-232.
    Chao, A. and Huggins, R. M. (2002), Closed Population Models, to appear in The Handbook of Capture-Recapture Methods,
    Manly, B., McDonald, T. and Amstrup, S. (Editors), Princeton University Press.
    Cochran, W. G. (1978), Laplace's Ratio Estimator, Contributions to Survey Sampling and Applied Statistics, David, H. A. (Editor), Academic Press, New York, 3-10.
    Chen, Y.-C. (1996), The Estimation of Population Size for Capture-Recapture Experiments under Pollock's Robust Design, Ph.D. dissertation, National Tsing-Hua University, Hsin Chu, Taiwan.
    Chiang, Y.-H. (2002), Sample Dependence in Capture-Recapture Experiments, Master dissertation, National Tsing-Hua University, Hsin Chu, Taiwan.
    Colwell, R. K. and Coddington, J. A. (1994), Estimating Terrestrial Biodiversity Through Extrapolation, Philosophical Transactions of the Royal Society of London Series B - Biological Sciences 345, 101-118.
    Cook, R. J. (1999), A Mixed Model for Two-State Markov Processes Under Panel Observation, Biometrics 55, 915-920.
    Cook, R. J., Ng, E. T. M., Mukherjee, J. and Vaughan, D. (1999), Two-State Mixed Renewal Processes for Chronic Disease, Statistics in Medicine 17, 175-188.
    Cormack, R. M. and Buckland, S. T. (1997), Capture and Recapture (Update), in Encyclopedia of Statistical Sciences, (Update vol. 1) Kotz, S., Read, C. B. and Banks, D. L. (Editors), Wiley, New York, 79-84.
    Darroch, J. N. (1958), The Multiple-Recapture Census I.: Estimation of a Closed Population, Biometrika 45, 343-359.
    Esty, W. W. (1986), The Efficiency of Good's Nonparametric Coverage Estimator, Annals of Statistics 14, 1257-1260.
    Fan, J. and Gijbels, I. (1996), Local Polynomial Modeling and its Applications. Chapman and Hall, London.
    Godambe, V. P. (1985), The Foundation of Finite Sample Estimation in Stochastic Process, Biometrika 40, 237-264.
    Good, I. J. (1953), The Population Frequencies of Species and the Estimation of Population Parameters, Biometrika 40, 237-264.
    Good, I. J. (2000), Turing's Anticipation of Empirical Bayes in Connection with the Cryptanalysis of the Naval Enigma, Journal of Statistical Computation and Simulation 66, 101-111.
    Hook, E. B. and Regal, R. R. (1995), Capture-Recapture Methods in Epidemiology: Methods and Limitations, Epidemiologic Reviews 17, 243-264.
    Horvitz, D. G. and Thompson, D. J. (1952), A Generalization of Sampling without Replacement from a Finite Universe, Journal of the American Statistical Association 47, 663-685.
    Huggins, R. M. (1989), On the Statistical Analysis of Capture Experiments, Biometrika 76, 133-140.
    Huggins, R. M. (1991), Some Practical Aspects of a Conditional Likelihood
    Approach to Capture Experiments, Biometrics 47, 725-732.
    Huggins, R. M. and Yip, P. S. F. (1999), Estimating of the Size of an Open Population from Capture-Recapture Data Using Weighted Martingale Methods, Biometrics 55, 387-395.
    Huggins, R. M. and Chao, A. (2002), Asymptotic Properties of an Optimal Estimating Function Approach to the Analysis of Mark Recapture Data, Communications in Statistics -- Theory and Methods 31, 575-595.
    Hwang, W.-D. and Chao, A. (1995), Quantifying the effects of un-equal catchabilities on Jolly-Seber estimators via sample coverage, Biometrics 51, 128-141.
    International Working Group for Disease Monitoring and Forecasting (IWGDMF) (1995a), Capture-Recapture and Multiple-Record Systems Estimation I: History and Theoretical Development, American Journal of Epidemiology 142, 1047-1058.
    International Working Group for Disease Monitoring and Forecasting (IWGDMF) (1995b), Capture-Recapture and Multiple-Record Systems Estimation II: Applications in Human Diseases, American Journal of Epidemiology 142, 1059-1068.
    Jolly, G. M. (1965), Explicit Estimates from Capture-Recapture Data with Both Death and Immigration-Stochastic Model, Biometrika 52, 225-247.
    Kalbfleisch, J. D. and Lawless, J. F. (1985), The Analysis of Panel Data Under a Markov Assumption, Journal of the American Statistical Association 80, 863-871.
    Kanji, G. K. (2002), Special Issue: Statistical Analysis of Data from Marked Bird Populations, Journal of Applied Statistics 29, 1-669.
    Kao, E. P. C. (1997), An Introduction to Stochastic Processes. Duxbury Press, New York.
    Klotz, J. (1973), Statistical Inference in Bernoulli Trials with Dependence, Annals of Statistics 1, 373-379.
    Lee, S.-M. and Chao, A. (1994), Estimating Population Size via Sample Coverage for Closed Capture-Recapture Models, Biometrics 50, 88-97.
    Lee, S.-M. (1996), Estimating Population Size for Capture-Recapture Data When Capture Probabilities Vary by Time, Behavior and Individual Animal, Communications in Statistics B- Simulation and Computation 25, 431-457.
    Lloyd, C. J. and Yip, P. S. F. (1991), A Unification of Inference from Capture-Recapture Studies through Martingale Estimating Functions, Estimating Equations, Godambe, V. P. (Editor), Oxford: Clarendon Press, 65-88.
    Lloyd, C. J. (1994), Efficiency of Martingale Methods in Recapture Studies, Biometrika 81, 305-315.
    McDonald, T. L. and Amstrup, S. C. (2001), Estimation of Population Size Using Open Capture-Recapture Models,
    Journal of Agricultural, Biological and Environmental Statistics 6, 206-220.
    Nichols, J. D., Pollock, K. H. and Hines, J. E. (1984), The Use of a Robust Capture-Recapture Design in Small Mammal Population Studies: A Field Example with Microtus pennsylvanicus, Acta Theriologica 29, 357-365.
    Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978), Statistical Inference from Capture Data on Closed Animal Populations, Wildlife Monographs 62, 1-135.
    Pedler, P. J. (1980), Effect of Dependence on the Occupation Time in a Two-State Stationary Markov Chain, Journal of the American Statistical Association 75, 739-746.
    Pielou, E. C. (1975), Ecological Diversity. Wiley, New York.
    Pledger, S. and Efford, M. (1998), Correction of Bias Due to Heterogeneous Capture Probability in Capture-Recapture Studies of Open Populations, Biometrics 54, 888-898.
    Pledger, S. (2000), Unified Maximum Likelihood Estimates for Closed
    Capture-Recapture Models Using Mixtures, Biometrics 56, 434-442.
    Pollock, K. H. (1974), The Assumption of Equal Catchability of Animals in Tag-Recapture Experiment, Ph.D. dissertation, Cornell University, Ithaca, New York.
    Pollock, K. H. and Otto, M. C. (1983), Robust Estimation of Population in Closed Animal Populations from Capture-Recapture Experiments, Biometrics 39, 1035-1049.
    Pollock, K. H., Hines, J. E. and Nichols, J. D. (1984),
    The Use of Auxiliary Variables in Capture-Recapture and Removal Experiments, Biometrics 40, 329-340.
    Pollock, K. H., Nichols, J. D., Brownie, C. and Hines, J. E. (1990), Statistical Inference for Capture-Recapture Experiments, Wildlife Monographs 107, 1-97.
    Pollock, K. H. (1991), Modelling Capture, Recapture, and Removal Statistics for Estimation of Demographic Parameters for Fish and Wildlife Populations: Past, Present and Future, Journal of the American Statistical Association 86, 225-238.
    Pollock, K. H. (2000), Capture-Recapture Models, Journal of the American Statistical Association 95, 293-296.
    Rexstad, E. and Burnham, K. P. (1991), User's Guide for Interactive Program CAPTURE. Colorado Cooperative Fish and Wildlife Research Unit, Fort Collins.
    Ross, S. M. (1983), Stochastic Processes. Second Edition, Wiley, New York.
    Ruppert, D. (1997), Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation, Journal of the American Statistical Association 92, 1049-1062.
    Sanathanan, L. (1972), Estimating the Size of a Multinomial Population, Annals of Mathematical Statistics 43, 142-152.
    Schwarz, C. J. and Seber, G. A. F. (1999), A Review of Estimating Animal Abundance III, Statistical Science 14, 427-456.
    Seber, G. A. F. (1965), A Note on the Multiple-Recapture Census, Biometrika 52, 249-259.
    Seber, G. A. F. (1982), The Estimation of Animal Abundance. Second Edition, London: Griffin.
    Seber, G. A. F. (1986), A Review of Estimating Animal Abundance, Biometrics 42, 267-292.
    Seber, G. A. F. (1992), A Review of Estimating Animal Abundance II, International Statistical Review 60, 129-166.
    Shao, J. and Tu, D. (1995), The Jackknife and Bootstrap. Springer-Verlag, New York.
    Solow A. R. (2000), The Effect of Dependence on Estimating Sample Coverage, Environmetrics 11, 245-249.
    Wand, M. P. and Jones, M. C. (1995), Kernel Smoothing. Chapman and Hall, London.
    White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982), Capture-Recapture and Removal Methods for Sampling Closed Populations, Los Alamos National Laboratory, LA-8787-NERP, Los Alamos, New Mexico, USA.
    Whittle, L. A. (1955), Some Distribution and Moment Formulae for the Markov Chain, Journal of Royal Statistical Society B 17, 235-242.
    Yip, P. S. F. (1991), A Martingale Estimating Equation for a Capture-Recapture Experiment in Discrete Time, Biometrics 47, 1081-1088.
    Yip, P. S. F., Wang, Y. and Chao, A. (2002), An Overview of Capture-Recapture Methods in Software Reliability, to appear in Springer Series on Frontiers on Reliability.
    Zippin, C. (1956), An Evaluation of the Removal Method of Estimating Animal Populations, Biometrics 12, 163-189.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE