研究生: |
王亭方 Wang, Ting-Fang |
---|---|
論文名稱: |
利用覆晶結構設計與實現單晶整合環境感測中樞 Design and Implementation of SoC Flip Chip Environmental Sensing Hub |
指導教授: |
方維倫
Fang, Wei-Leun |
口試委員: |
賴梅鳳
Lai, Mei-Feng 蘇旺申 Su, Wang-Shen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | CMOS-MEMS 、覆晶 、金屬氧化物半導式氣體感測器 、空氣電容濕度感測器 、風速感測器 、二極體溫度計 |
外文關鍵詞: | CMOS-MEMS, flip chip, MOS gas sensor, diode thermometer, capacitive humidity sensor, Hot wire anemometer |
相關次數: | 點閱:44 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為提升日常生活品質,大眾越發重視生活周遭的環境資訊,因此同時監測多種環境資訊之產品日漸蓬勃,並以實現感測器的整合與尺寸微縮為目標。現今環境感測市售產品多以 SiP 之形式整合,本研究利用TSMC 0.18 μm 1P6M CMOS標準製程優勢,與覆晶技術設計開發四種核心環境感測器,包括氣體、濕度、風速與溫度感測器,並透過自行操作後製程去將上述多種感測器整合在單一晶片,去實現環境感測系統晶片(System on Chip, SoC)。本研究包含元件設計、系統整合與製程相容優化三個面向:(1)元件:透過覆晶技術製作氣體感測器以解決在定義金屬氧化物ZnO-SnO2複合材料位置時之逸散問題;(2)元件:設計垂直整合具感測電極之濕度感測器與微加熱器,並將加熱器同時作為風速感測器,藉此縮小尺寸;(3)系統:藉雙面後製程移除背面矽基材與二氧化矽,使多晶矽層作為氣體感測器感測電極,並同時作為熱管理結構減少熱傳;(4)系統:單晶整合氣體、溫度、濕度與風速感測器,實現多功能環境系統晶片,尺寸縮小至2.2 mm × 2.2 mm (BME680: 3 mm × 3 mm,因採用多晶片封裝)。
In order to ensure the quality of life, modern society pays attention to various environmental information. Therefore, products that monitor various environmental information are booming, with the goal of sensor integration and size reduction. Commercial environmental sensing products nowadays are mostly integrated through packaging (SiP). This study demonstrates a monolithically integrated environmental sensing hub, including the MOS type gas sensor (G) with a microheater, diode thermometer (T), capacitive humidity sensor (H), and Hot wire anemometer (F) through standard TSMC 0.18 μm 1P6M CMOS process and in-house post-CMOS processes. Merits of the study include two perspectives, device design and system integration: The contributions of this research cover two aspects: component design and system integration: (1) Component: using flip-chip technology to solve the problem of dissipation when defining metal oxide composite materials for gas sensors. (2) Component: vertically integrate a humidity sensor with sensing electrodes and a micro-heater. The heater will be used as a flow sensor simultaneously, and the overall chip size can be reduced. (3) System: single crystal integrated gas, temperature, humidity and flow sensor, realizing a multi-functional environmental system on a single chip.
[1] HAMAMATSU,Mini-spectrometerC12880MA
(Available:https://tw.element14.com/hamamatsu/c12880ma/mini-spectrometer-5-to-50deg-c/dp/3134750#)
[2] R.-P. Feynman, There's plenty of room at the bottom, Engineering and Science 23(5), Caltech, February, pp. 22-36, 1960.
[3] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R.Mahnkopf, “More-than-Moore,” International Technology Roadmap for Semiconductors (ITRS), 2005.
[4] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors, ” J. Micromech. Microeng., vol. 19, no. 10, pp. 105017, 2009.
[5] Yole Market
(Available at: http://www.yole.fr/)
[6] O. Brand, “Fabrication Technology,” CMOS-MEMS, Weinheim, Germany: Wiley-VCH, pp. 1-67, 2008.
[7] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low-g applications,” Sensors and Actuators A: Physical, vol. 54, no. 1, pp. 472-476, 1996.
[8] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors, pp. 125-128, 2005.
[9] Y.-C. Lee, M.-L. Hsieh, P.-S. Lin, C.-H. Yang, S.-K. Yeh, T.-T. Do, and W. Fang, “CMOS-MEMS technologies for the applications of environment sensors and environment sensing hubs,” vol. 31, pp. 074004 (41), 2021.
[10] W. Fang, S.-S. Li, Y. Chiu, and M.-H. Li, 3D and Circuit Integration of MEMS. 1st Ed., Weinheim, Germany: Wiley-VCH, 2021. (ISBN: 978-3-527-34647-9)
[11] Y.-C. Lin, P.-H. Hong, S.-K. Yeh, C.-C. Chang, and W. Fang, “Monolithic integration of pressure/humidity/temperature sensors for CMOS-MEMS environmental sensing hub with structure designs for performances enhancement,” IEEE MEMS, pp. 54-57, 2020.
[12] C.-C. Chang, P.-H. Hong, S.-K. Yeh, Y.-C. Lin, and W. Fang, “Environmental sensing hub on single chip using double-side post-CMOS processes,” IEEE MEMS, pp. 877-880, 2020.
[13] Electrochemical Sensors, International Sensor Technology, pp. 27–35. (Available at: https://www.intlsensor.com/pdf/electrochemical.pdf)
[14] Y. Xing, B. Urasinska-Wojcik, and J. W. Gardner, “Plasmonic enhanced CMOS non-dispersive infrared gas sensor for acetone and ammonia detection,” IEEE I2MTC, pp. 1-5, 2018.
[15] Y.-C. Lee, S.-W. Cheng, and W. Fang, “Monolithic integrated CMOS-MEMS fluorescence quenching gas sensor and resistive temperature detector (RTD) for temperature compensation,” Actuators and Microsystems & Eurosensors, pp. 1293-1296, 2019.
[16] T.-L. Chien., Master Thesis, 2022
[17] C.-L. Dai and M.-C. Liu, “Nanoparticle SnO2 Gas Sensor with Circuit and Micro Heater on Chip Fabricated Using CMOS-MEMS Technique,” IEEE NEMS, pp. 959-963, 2007.
[18] Y.-C. Lee, S.-W. Cheng, Y.-C. Lin, and W. Fang, “Monolithic integrated CMOS-MEMS MOS type gas sensor and novel heater for sensitivity and power consumption enhancement,” Transducers‘19, pp. 1389-1392, 2019.
[19] P. B. Weisz, “Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis,” The Journal of Chemical Physics, vol. 21, no. 9, pp. 1531-1538, 1953.
[20] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sensors and Actuators B: Chemical, vol. 68, no. 1, pp. 189-196, 2000.
[21] O. V. Safonova, G. Delabouglise, B. Chenevier, A. M. Gaskov, and M. Labeau, “CO and NO2 gas sensitivity of nanocrystalline tin dioxide thin films doped with Pd, Ru and Rh,” Materials Science and Engineering: C, vol. 21, no. 1, pp. 105-111, 2002.
[22] S. Vallejos, V. Khatko, J. Calderer, I. Gracia, C. Cane, E. Llobet, and X. Correig, “Micro-machined WO3-based sensors selective to oxidizing gases,” Sensors and Actuators B: Chemical, vol. 132, no. 1, pp. 209-215, 2008.
[23] J.-H. Yu and G.-M. Choi, “Electrical and CO gas sensing properties of ZnO–SnO2 composites,” Sensors and Actuators B: Chemical, vol. 52, no. 3, pp. 251-256, 1998.
[24] J.-H. Yu and G.-M. Choi, “Electrical and CO gas sensing properties of ZnO–SnO2 composites,” Sensors and Actuators B: Chemical, vol. 52, no. 3, pp. 251-256, 1998.
[25] Biplob Mondal, Borat Basumatari, Jayoti Das, Chirosree Roychaudhury, Hiranmay Saha, Nillohit Mukherjee, “ZnO–SnO2 based composite type gas sensor for selective hydrogen sensing,” Sensors and Actuators B: Chemical, 2014, vol. 194, pp. 389-396
[26] C.-H. Yang, Master’s thesis NTHU, 2021
[27] S. Cular, “The Measurement and Uncertainty of Air Dielectric Capacitors from 1 kHz to 10 MHz,” Sandia National Laboratories, 2015.
[28] J. Fraden, “Humidity and moisture sensors,” in Handbook of Modern Sensors: Springer, 2016, pp. 507-523.
[29] T. Boltshauser, H. Baltes, “Capacitive humidity sensors in SACMOS technology with moisture absorbing photosensitive polyimide,” Sensors and Actuators A: Physical, 1991, vol. 26, pp. 509-512.
[30] Jian Wu, Willy Sansen, “Electrochemical time of flight flow sensor,” Sensors and Actuators A: Physical, 2002, Volumes 97–98, pp. 68-74.
[31] W. Xu, X. Wang, X. Zhao, Izhar and Y. -K. Lee, “Two-Dimensional CMOS MEMS Thermal Flow Sensor With High Sensitivity and Improved Accuracy,” Journal of Microelectromechanical Systems, vol. 29, no. 2, pp. 248-254.
[32] Y. -H. Li, T. -L. Chien, F. Shih, Y. Huang and W. Fang, “Monolithic Integration of Humidity/Flow/Temperature Sensors As Environment Sensing Hub for Apparent-Temperature Detection,” IEEE MEMS, 2023, pp. 574-577
[33] BOSCH
(Available at:https://www.boschsensortec.com/products/environmental-sensors/gas-sensors/bme680/)
[34] STMicroelectronics
(Available at: https://www.st.com/en/solutions-reference-designs/sl-mksbox1v1.html)
[35] Sensirion
(Available:https://www.sensirion.com/en/environmental-sensors/environmental-sensor-node-sen5x/)
[36] F. Udrea, S. Santra, and J.-W. Gardner, “CMOS temperature sensors -concepts, state-of-the-art and prospects,” IEEE Proc. Int. Semiconductor Conf. CAS, pp. 31-40, 2008.
[37] M. Mansoor, I. Haneef, S. Akhtar, A. De Luca, and F. Udrea, “Silicon diode temperature sensors- A review of applications,” Sensors and Actuators A: Physical, vol. 232, pp. 63-74, 2015.
[38] L. V. King, “XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry,” Philosophical transactions of the royal society of London. series A, containing papers of a mathematical or physcial character, vol. 214, no. 509-522, pp. 373-432, 1914.
[39] Tien Chou, Ya Chu Lee, Fuchi Shih, Yuanyuan Huang, Sung Cheng Lo, Tung Lin Chien, Chih Fan Hu, Weileun Fang, “Flip-Chip Ir and Force Sensors For Both Touch and Touchless Elevator Buttons Applications,” IEEE MEMS, 2022, pp. 523-526.
[40] S.-K. Yeh, J.-H. Lee, and W. Fang, “Development of the Backside Loading Inductive Tactile Force Sensor Using the Flip-Chip Bonding of CMOS Sensing Chip,” IEEE Sensors Journal, vol. 20, no. 6, pp. 2868-2876, 2020.
[41] G. Korotcenkov and B. K. Cho, “Metal oxide composites in conductometric gas sensors: Achievements and challenges,” Sensors and Actuators B: Chemical, vol. 244, pp. 182-210, 2017.
[42] A. Dey, “Semiconductor metal oxide gas sensors: A review,” Materials Science and Engineering: B, vol. 229, pp. 206-217, 2018.
[43] Mechanical Industry
(Available at : www.automan.tw/426_07_p055-061-LinGuan)
[44] H. Looyenga, “Dielectric constants of heterogeneous mixtures,” Physica, 31, pp. 401-406, 1965.
[45] Central Weather Administration
(Available at : https://www.cwa.gov.tw)
[46] C.-T. Fang, Master Thesis, 2023
[47] G. Korotcenkov, B.K. Cho, “Metal oxide composites in conductometric gas sensors: Achievements and challenges,” Sensors and Actuators, 2017, vol. 244, pp. 182-210.
[48] Ling Zhu, Wen Zeng, “Room-temperature gas sensing of ZnO-based gas sensor: A review ,” Sensors and Actuators A: Physical, 2017, vol.267, pp. 242-261.