簡易檢索 / 詳目顯示

研究生: 魏心樂
NGUI, XIN-LE
論文名稱: 運用機械手臂夾具探討食品定量夾取之研究
Exploring Food Quantitative Gripping Through the Use of Robotic Arm Gripper
指導教授: 葉維彰
Yeh, Wei-Chang
口試委員: 李昀儒
Lee, Yun-Ju
林佳陞
Lin, Chia-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 95
中文關鍵詞: 食品盛裝拾放作業機械手臂夾具定量夾取
外文關鍵詞: Food Packaging, Pick-and-Place Process, Robotic Arm, Gripper, Quantitative Gripping
相關次數: 點閱:35下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著現代化生活節奏加速,便利商店銷售的冷凍餐盒成為許多消費者的外食選項之一,製造商為滿足不同消費者的需求,推出多樣化的餐盒,亦可見該食品產業的需求市場。然而,傳統的食品加工業一直以來都被認為是工業化需求程度較低的產業,因此除去單一類型、大量生產的專業機械手臂,在食品盛裝的簡單拾放作業 (Pick-and-place Process) 依舊依賴大量的勞動力進行。
    近年來,受到新冠疫情的影響,人們的衛生觀念大幅度提升,同時為了避免勞動力人數限制造成的停工、疾病等衛生問題,食品工業轉向更注重自動化機械手臂的應用。為了能夠快速取代簡單的拾放作業,機械手臂 (Robotic Arm) 成為快速變更生產線上的理想選擇。然而,市面上的機械手臂以兩指或三指夾具 (Gripper) 為主,對於多樣的食品處理依舊有限制,因此本研究致力於開發更適用於食品工業的夾具。
    在完成動態夾具設計後,本研究進行了單次重複性實驗,以評估所設計夾具的夾取效能。結果顯示,夾具在相同參數設計下的重複性拾放作業具有良好的穩定性與可靠度。基於餐盒內食品的多樣性,本研究針對不同型態的食品進行了夾取實驗。為了客觀評估夾具效能和影響夾取效果的顯著因子,實驗前透過食品密度計算單次夾取的目標重量,並進行實驗設計與統計分析,提出了對4種不同形狀食品定量夾取的最佳參數設計,以提高夾具的適用性。
    食品的定量夾取能讓製造商更好地計算與控制原物料使用量,減少不必要的浪費。本研究的結果為食品工業中機械手臂夾具設計的動態設計和食品定量夾取提供了重要參考。


    As the pace of modern life accelerates, frozen meal boxes sold in convenience stores have become one of the dining options for many consumers. To meet the diverse needs of different consumers, manufacturers have launched a variety of meal boxes, indicating a demand market for this food industry. However, traditional food processing has always been considered an industry with lower industrialization needs. Therefore, apart from single-type, mass-produced specialized robots, simple pick-and-place operations in food packaging still rely heavily on labour.
    In recent years, affected by the COVID-19 pandemic, people’s awareness of hygiene has greatly increased. To avoid issues such as shutdowns and hygiene problems caused by labour force restrictions, the food industry has turned to focus more on the application of automation robots. To quickly replace simple pick-and-place process, robotic arms have become an ideal choice for rapid changes in production lines. However, most robotic arms on the market use two-finger or three-finger grippers which are still limited for diverse food handling; therefore this study is dedicated to developing grippers more suitable for the food industry.
    After completing the dynamic gripper design, this study conducted repeatability experiments to evaluate the gripping performance of the designed gripper. The results showed that the gripper has good stability and reliability in repetitive pick-and-place tasks under the same parameter design. Due to the diversity of food, this study carried out gripping experiments on different types of food. To objectively assess the efficiency of the gripper and the significant factors affecting the gripping effect, the target weight for a single grip was calculated based on food density before the experiments. Design of experimental (DOE) and statistical analysis were conducted, and optimal parameter designs for quantitative gripping of four different shaped foods were proposed to enhance the applicability of the gripper.
    Quantitative gripping of food allows manufacturers to better calculate and control the usage of raw materials, reducing unnecessary waste. The results of this study provide important references for the dynamic design of robotic arm gripper and quantitative gripping in the food industry.

    摘要 I ABSTRACT II 謝辭 IV 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 1.3 研究架構 6 第二章 文獻回顧 8 2.1 食品工業之相關研究 8 2.1.1 食品工業自動化系統 8 2.1.2 冷凍餐盒的發展 12 2.1.3 食品特性 13 2.2 食品夾取之研究 15 2.2.1食品夾取技術 15 2.2.2 食品夾取的挑戰 18 2.2.3 食品類型 19 2.3 新型夾具之設計原理與特性 21 2.3.1 目標食品 21 2.3.2 夾具設計原理 23 2.3.3 新型夾具的類型 24 2.4 小結 26 第三章 研究方法 27 3.1 實驗設備 27 3.2 夾具設計 29 3.2.1 回饋迴路 29 3.2.2 夾柄設計 31 3.2.3 新型夾具設計 36 3.2.4 實驗變異性 43 3.3實驗設計 43 3.3.1 一般全因子實驗設計 44 3.3.2 實驗設計流程 45 3.4 統計分析 46 3.4.1 研究假設 46 3.4.2 多組比較分析 48 3.5 小結 50 第四章 實驗結果 51 4.1 實驗結果 51 4.1.1 一般全因子實驗設計 51 4.1.2 不同食品實驗結果 60 4.1.3 單樣本z檢定 65 4.2 不同因子對夾取效果的影響 66 4.2.1因子與參數結果比較 66 4.2.2不同因子交互比較 71 第五章 討論 78 5.1 實驗結果與討論 78 5.1.1 實驗結果總結 78 5.1.2 最佳參數水準 80 5.2 實驗限制 82 5.3 改進方法 83 第六章 結論與未來展望 85 6.1 結論 85 6.2 未來展望 87 參考文獻 89

    [1] R. Sam and S. Nefti, "A new design approach of robotic gripper for reducing operating cost for handling food product," 2010 IEEE 9th International Conference on Cyberntic Intelligent Systems, 2010, doi: 10.1109/UKRICIS.2010.5898133.
    [2] F. a. A. O. o. t. U. Nations, World Food and Agriculture – Statistical Yearbook 2022 (FAO Statistical Yearbook – World Food and Agriculture). Rome, Italy: FAO, 2022.
    [3] S. Ross. "4 Countries That Produce the Most Food." Investopedia. https://www.investopedia.com/articles/investing/100615/4-countries-produce-most-food.asp#toc-the-united-states (accessed 30 April, 2023).
    [4] I. F. o. Robotics, "Staff Shortage Boosts Service Robots – Sales Up 48% " in World Robotics 2023 - Service Robots report released, ed. IFR Press Room: International Federation of Robotics, 2023.
    [5] L. F. P. Oliveira, A. P. Moreira, and M. F. Silva, "Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead," Robotics, vol. 10, no. 2, 2021, doi: 10.3390/robotics10020052.
    [6] "Global Robot End Effector Market Report 2022: A $5+ Billion Market by 2027 - Widespread Utilization of Collaborative Robots - ResearchAndMarkets.com," vol. 2022, ed. Business Wire: ResearchAndMarkets.com's, 2022.
    [7] B. Zhang, Y. Xie, J. Zhou, K. Wang, and Z. Zhang, "State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: A review," Computers and Electronics in Agriculture, vol. 177, 2020, doi: 10.1016/j.compag.2020.105694.
    [8] 臺灣證券交易所. "食品產業鏈簡介." 產業價值鏈資訊平台. https://ic.tpex.org.tw/introduce.php?ic=M000&stk_code=1201 (accessed 19 October, 2023).
    [9] K. Askew. "Robotics, AI and the future of food: ‘The COVID-19 pandemic is a crisis that robots were built to address’." FoodNavigator. https://www.foodnavigator.com/Article/2021/01/20/Robotics-AI-and-the-future-of-food-The-COVID-19-pandemic-is-a-crisis-that-robots-were-built-to-address?utm_source=copyright&utm_medium=OnSite&utm_campaign=copyright (accessed 20 January, 2021).
    [10] W. Grobbelaar, A. Verma, and V. K. Shukla, "Analyzing Human Robotic Interaction in the Food Industry," Journal of Physics: Conference Series, vol. 1714, no. 1, 2021, doi: 10.1088/1742-6596/1714/1/012032.
    [11] M. Irfan, N. A. Sulehri, and N. Manickiam, "Digital threads in turbulent times: unraveling technostress and cleaner production in the food industry," Frontiers in Robotics and AI, vol. 10, 2024, doi: 10.3389/frobt.2023.1293904.
    [12] M. Mama and G. Alemu, "Prevalence, antimicrobial susceptibility patterns and associated risk factors of Shigella and Salmonella among food handlers in Arba Minch University, South Ethiopia," BMC Infectious Diseases, vol. 16, no. 1, p. 686, Nov 21 2016, doi: 10.1186/s12879-016-2035-8.
    [13] C. J. Baldwin, The 10 Principles of Food Industry Sustainability. Wiley Online Library - AutoHoldings Books: John Wiley & Sons, Ltd., 2015.
    [14] S. Kim, J. Baek, M. Jeong, J. Suh, and J. Lee, "Development of Fishcake Gripping and Classification Automation Process Based on Suction Shape Transformation Gripper," Inventions, vol. 9, no. 1, 2024, doi: 10.3390/inventions9010017.
    [15] Z. Wang, S. Hirai, and S. Kawamura, "Challenges and Opportunities in Robotic Food Handling: A Review," Frontiers in Robotics and AI, vol. 8, p. 789107, 2021, doi: 10.3389/frobt.2021.789107.
    [16] D. M. Dooley et al., "FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration," npj Science of Food, vol. 2, no. 1, 2018, doi: 10.1038/s41538-018-0032-6.
    [17] Y. Yamanaka, S. Katagiri, H. Nabae, K. Suzumori, and G. Endo, "Development of a Food Handling Soft Robot Hand Considering a High-speed Pick-and-place Task," presented at the 2020 IEEE/SICE International Symposium on System Integration Honolulu, January 12-15, 2020, 2020.
    [18] K. Indrajeet, R. Jyoti, M. Noor, H. Shahnawaz, and K. Rijwan, "Opportunities of Artificial Intelligence and Machine Learning in the Food Industry," Journal of Food Quality, vol. 2021, pp. 1-10, 2021, doi: 10.1155/2021/4535567.
    [19] A. Mason, T. Haidegger, and O. Alvseike, "Time for Change: The Case of Robotic Food Processing [Industry Activities]," IEEE Robotics & Automation Magazine, vol. 30, no. 2, pp. 116-122, 2023, doi: 10.1109/mra.2023.3266932.
    [20] J. O. Gray and S. T. Davis, "Robotics in the food industry: an introduction," in Robotics and Automation in the Food Industry, 2013, pp. 21-35.
    [21] A. Robotics. "MEAT GRIPPER." Applied Robotics Inc. https://www.appliedrobotics.com/products/automation/grippers/meat-gripper/ (accessed 3 November, 2023).
    [22] VUOTOTECNICA. "Solutions with Vuototecnica vacuum cups." VUOTOTECNICA. https://www.vuototecnica.co.uk/cup.php (accessed 3 November, 2023).
    [23] T. K. Lien, "Gripper technologies for food industry robots," in Robotics and Automation in the Food Industry, 2013, pp. 143-170.
    [24] R. Raffik, R. P. Roshan, C. Subash, and K. B. Sanjeev, "Role of Robotics and Automation in Food Industries: An Overview," presented at the 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), 2023.
    [25] R. Montgomery. "Automated Food Handling - A Super Short Introduction to Gripping Softly." Unchained Robotics. https://unchainedrobotics.de/en/blog/automated-food-handling-a-super-short-introduction-to-gripping-soft (accessed 26 January, 2023).
    [26] N. Kondo, "Robotics and automation in the fresh produce industry," in Robotics and Automation in the Food Industry, 2013, pp. 385-400.
    [27] KUKA. "Robotics and Automation in the food Industry." KUKA AG. https://www.kuka.com/en-us/industries/consumer-goods-industry/automation-food-industry#Robots (accessed 6 November, 2023).
    [28] K. AG. "食品工業中的自動化." https://www.kuka.com/zh-tw/行業/消費品行業/自動化-食品工業 (accessed 19 December, 2023).
    [29] 元泰食品機械有限公司. "KBS便當定量機1500型(工廠用)." https://www.yuan-tay.com.tw/fujiseiki_kbs/ (accessed 18 December, 2023).
    [30] S. Rai et al., "Food product quality, environmental and personal characteristics affecting consumer perception toward food," Frontiers in Sustainable Food Systems, vol. Volume 7 - 2023, 2023, doi: 10.3389/fsufs.2023.1222760Rai.
    [31] 何秀玲, "健身飲食夯!鎖定不同族群 全家鮮食跨入飲食調控領域," in 經濟日報, ed. 產業熱點, 2023.
    [32] A. Group, eBook: 10 good reasons to invest in robots, 2013. [Online]. Available: https://new.abb.com/search/results#query=10%20good&page=1.
    [33] I. F. o. Robotics, "Labor Shortage: How to Automate Small and Midsized Enterprises," ed. Frankfurt: IFR, 2023.
    [34] C. R. Sadler, T. Grassby, K. Hart, M. Raats, M. Sokolović, and L. Timotijevic, "Processed food classification: Conceptualisation and challenges," Trends in Food Science & Technology, vol. 112, pp. 149-162, 2021, doi: 10.1016/j.tifs.2021.02.059.
    [35] G. Hu, M. Ahmed, and M. R. L'Abbe, "Natural language processing and machine learning approaches for food categorization and nutrition quality prediction compared with traditional methods," The America Journal of Clinical Nutrition, vol. 117, no. 3, pp. 553-563, Mar 2023, doi: 10.1016/j.ajcnut.2022.11.022.
    [36] M. A. Peyron, A. Woda, P. Bourdiol, and M. Hennequin, "Age-related changes in mastication," Journal of Oral Rehabilitation, vol. 44, no. 4, pp. 299-312, Apr 2017, doi: 10.1111/joor.12478.
    [37] R. Zuo, Z. Zhou, B. Ying, and X. Liu, "A Soft Robotic Gripper with Anti-Freezing Ionic Hydrogel-Based Sensors for Learning-Based Object Recognition," presented at the 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021.
    [38] C.-H. Liu, F.-M. Chung, Y. Chen, C.-H. Chiu, and T.-L. Chen, "Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1830-1840, 2020, doi: 10.1109/tmech.2020.2997743.
    [39] Z. Wang, H. Furuta, S. Hirai, and S. Kawamura, "A Scooping-Binding Robotic Gripper for Handling Various Food Products," Front Robot AI, vol. 8, p. 640805, 2021, doi: 10.3389/frobt.2021.640805.
    [40] Z. Wang, Y. Torigoe, and S. Hirai, "A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling," IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1909-1916, 2017, doi: 10.1109/lra.2017.2714141.
    [41] Y. Makiyama, Z. Wang, and S. Hirai, "A Pneumatic Needle Gripper for Handling Shredded Food Products," presented at the The 2020 IEEE International Conference on Real-time Computing and Robotics, September 28-29, 2020.
    [42] D. WAVE, "Bento Box Dish-up Robot (Industrial robot)," ed. YouTube: YouTube, 2018.
    [43] G.-N. Zhu, Y. Zeng, Y. S. Teoh, E. Toh, C. Y. Wong, and I. M. Chen, "A Bin-Picking Benchmark for Systematic Evaluation of Robotic-Assisted Food Handling for Line Production," IEEE/ASME Transactions on Mechatronics, vol. 28, no. 3, pp. 1778-1788, 2023, doi: 10.1109/tmech.2022.3227038.
    [44] K. C. Bingham, M. Hessler, S. Lama, and T. Deemyad, "Design and Implementation of a Compliant Gripper for Form Closure of Diverse Objects," Applied Sciences, vol. 13, no. 17, 2023, doi: 10.3390/app13179677.
    [45] 食品營養成分資料庫(新版) [Online] Available: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178&f=5,
    [46] S. R. Mudambi, S. M. Rao, and M. V. Rajagopal, Food Science (Chapter 4 Basic Food Groups and their Nutrient Contribution). ProQuest Ebook Central: New Age International Ltd, 2006.
    [47] 國民健康署, "6大類食物," vol. 2019, ed. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=4086: 衛生福利部, 2019.
    [48] Y. Liu, J. Hou, C. Li, and X. Wang, "Intelligent Soft Robotic Grippers for Agricultural and Food Product Handling: A Brief Review with a Focus on Design and Control," Advanced Intelligent Systems, 2023, doi: 10.1002/aisy.202300233.
    [49] 社群實驗室, "便當配菜如何挑選?台灣人最愛TOP8便當經典配菜 缺「它」不可!," vol. 2023, ed: 聯合線上公司, 2023.
    [50] 社區健康組. "學校午餐食物內容及營養基準." 中華民國衛生福利部. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=545&pid=731 (accessed 12/28, 2020).
    [51] L. Y. Lee, O. A. Syadiqeen, Z. H. Chin, and S. G. Nurzaman, "Customizable Power Grasps From Uncrewed Aerial Vehicles via a Soft “Wrapping” Gripper," IEEE/ASME Transactions on Mechatronics, vol. 29, no. 2, pp. 972-983, 2024, doi: 10.1109/tmech.2024.3356720.
    [52] J. Cormack, M. Fotouhi, G. Adams, and T. Pipe, "Automated Extraction of 3D Printed Parts From Unfused PA12 Powder Using a One-Shot 3D Printed Compliant Gripper," IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8655-8662, 2021, doi: 10.1109/lra.2021.3113383.
    [53] 周澤川, 實驗設計與分析. 台北市: 三民書局 (in Chinese), 1986.
    [54] D. C. Montgomery, Design and Analysis of Experiments, 7th ed. 台北縣: 高立圖書有限公司 (in Chinese), 2000.
    [55] 包裝食品裝量檢驗法, 中華民國國家標準, 國家標準(CNS)網路服務系統, 2013. [Online]. Available: https://www.cnsonline.com.tw/

    QR CODE