研究生: |
李皇辰 Lee, Huang-Chen |
---|---|
論文名稱: |
非自主性移動無線感測器網路:模型化與應用 Non-Autonomous Mobile Wireless Sensor Network: Modeling and Application |
指導教授: |
金仲達
King, Chung-Ta |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 無線感測器網路 、移動模型 、環境監控 、現象內監測 、漂浮軌跡 、土石流 |
外文關鍵詞: | wireless sensor network, mobility model, environment monitoring, in-situ monitoring, drifting trajectory, debris flow |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用無線感測器進行環境的監測,可以克服傳統監測方式的許多限制,並提高監測範圍與有效性。一般無線感測器網路系統的設計,多是假設無線感測器安裝於固定地點,或者是具有自主移動的能力。本論文針對非自主性移動的無線感測器網路(Non-Autonomous Mobile Wireless Sensor Network,簡稱NAMWSN),例如被動順流於河流、海面或土石流上的流體的無線感測器,進行分析探討。此種感測器系統可以作到現有固定式感測器系統無法完成的功能。以土石流監控的例子來說,經過特別設計的無線感測器,可以隨著土石流移動,並於土石流內部進行當下現象的量測。
本研究設計並實作NAMWSN系統來進行土石流災害監控。傳統的土石流監測系統為固定式安裝於河岸、山坡等特定區域,被動的偵測土石流發生時所伴隨的現象。此種定點監測的方式,無法有效的持續監控移動的土石流,更無法監測土石流內部的資訊。本論文提出利用現象內監測的方式,讓無線感測器可以隨著土石流一起移動,使其可持續的監測土石流內部的資訊,包括:速度、方向與孔隙壓力等,並且即時將資訊回傳,直接監測現象內的情形。為了使無線感測器能夠長時間且有效率的在戶外運作,此種戶外的無線感測器系統設計考量與一般室內運作的無線感測器系統有顯著的差異。本研究針對系統各項設計考量,包含低耗電、即時反應性、通訊性能與包裝設計等,作了完整的探討、分析與測試。
設計NAMWSN系統,所仰賴的相關技術和傳統固定式的感測器有很大的差異,其中一項關鍵技術就是移動模型(mobility model)的建立。本文即使用在水上流動的非自主性移動無線感測器,透過蒐集其GPS移動軌跡,以此進行移動模型的分析與建立。所建立的移動模型,可產生大量虛擬的漂流軌跡,並提供NAMWSN無線感測器佈建策略與無線網路通訊的分析與模擬,節省實際測試系統的成本,並提升系統的NAMWSN系統的監測與網路傳輸效率。
Monitoring natural environments and disasters using wireless sensors could eliminate the constraints of wires that exist in traditional methods and could expand monitoring regions and increase monitoring efficiency. Currently, most wireless sensor systems are designed with some implicit assumptions, including that sensors are either stationary and installed in the ground or that they are able to move autonomously. In this thesis, we study a Non-Autonomous Mobile Wireless Sensor Network (NAMWSN), i.e., wireless sensor that drift on the surface of a river, sea, or debris flow and are moved passively by currents. The advantage of a NAMWSN is that the wireless sensors can directly and in-situ measure the parameters inside the target phenomena, which existing immobile equipments cannot do.
In this thesis, we design and implement a non-autonomous mobile wireless sensor system to monitor debris flow. Traditional debris flow monitoring systems are stationary, but are expected to monitor moving debris. Obviously, this approach cannot efficiently track debris flows. For this reason, based on the NAMWSN concept, we propose a novel method of in-situ monitoring debris flow by dropping specially designed sensors in a debris flow and letting them move within the flow; thereby making the continuous tracking of debris flow and real-time reporting of data possible. The design considerations are significantly different from an indoor wireless sensor system. We analyze and evaluate the proposed wireless-sensor-based debris flow monitoring system in many aspects, including low power operation, system responsiveness, communication performance and packaging, etc.
In contrast to traditional immobile WSNs, designing a NAMWSN system requires the development of new techniques, such as building a mobility model of the NAMWSN sensors. In this thesis, we collect the drifting trajectories of the wireless sensors using GPS; these trajectories are converted into maps and are used to build the mobility model of drifting objects. Based on the mobility model, an unlimited number of virtual drifting trajectories can be generated and fed into simulators. Therefore, we can analyze the performance of the newly designed NAMWSN system without costly experiments and can improve system performance.
[1] RD Instruments ;, "In: Acoustic Doppler Current Profilers-Principles of Operation: A Practical Primer", RD Instruments, San Diego, CA, pp. 1–9,1989
[2] Appell, G.F.; Bass, P.D.; Metcalf, M.A.; , "Acoustic Doppler current profiler performance in near surface and bottom boundaries," Oceanic Engineering, IEEE Journal of , vol.16, no.4, pp.390-396, Oct 1991
[3] Appell, G.; Williams, R.; Sprenke, J.; , "Development of a Real Time Measurement System for Charleston Harbour," OCEANS 1984 , vol.19, pp. 98- 103, Sep 1987
[4] Crisp, N.; Griffiths, G.; , "Observations of Tidal and Wind-Driven Currents, and Acoustic Backscatter using an Acoustic Doppler Current Profiler on a Surface-Following Buoy," Current Measurement, 1995., Proc. of the IEEE Fifth Working Conference on , pp.233-240, 7-9 Feb 1995
[5] Bos, W.G.; , "A Comparison of Two Doppler Current Profilers," Oceanic Engineering, IEEE Journal of , vol.16, no.4, pp.374-381, Oct 1991
[6] Brumley, B.H.; Cabrera, R.G.; Deines, K.L.; Terray, E.A.; , "Performance of a Broad-Band Acoustic Doppler Current Profiler," Oceanic Engineering, IEEE Journal of , vol.16, no.4, pp.402-407, Oct 1991
[7] Goldstein, R. M.; Zebker, H.A.;, “Interferometric Radar Measurement of Ocean Surface Currents,” Nature, vol. 328, no. 6132, pp. 707-709, Aug. 1987.
[8] Romeiser, R.; , "Current Measurements by Airborne Along-Track InSAR: Measuring Technique and Experimental Results," Oceanic Engineering, IEEE Journal of , vol.30, no.3, pp.552-569, July 2005
[9] Romeiser, R.; , Suchandt, S.; Runge, H.; Steinbrecher, U.;, "High-Resolution Current Measurements from Space with TerraSAR-X Along-Track InSAR," OCEANS 2009-EUROPE, 2009. OCEANS '09., pp.1-5, 11-14 May 2009
[10] Graber, H.C.; Thompson, D.R.; Carande, R.E.; , "Ocean Surface Features and Currents Measured with Synthetic Aperture Radar Interferometry and HF Radar", Journal of Geophysical Research., vol. 101, pp. 25,813-25,832, 1996
[11] Siegmund, R.; Mingquan Bao; Lehner, S.; Mayerle, R.; , "First Demonstration of Surface Currents Imaged by Hybrid Along-and Cross-Track Interferometric SAR," Geoscience and Remote Sensing, IEEE Transactions on , vol.42, no.3, pp. 511- 519, March 2004
[12] Lee, H.C.; Lin, C.Y.; Hsu, S.W.; King, C.T.;, "On Building Mobility Models for Floating Objects, " Proc. 7th ACM SenSys, pp. 377-378, Berkeley, CA, USA, 2009
[13] Liu, K.; Li, M.;, Liu, Y.;, Li, M.;, Guo, Z.;, Hong, F.:, "Passive Diagnosis for Wireless Sensor Networks," Proc. 6th ACM SenSys, pp. 113-126, Raleigh, NC, USA, 2008
[14] Lee, H.C.; Liu, C.J.; Yang, J.; Huang, J.T.; Fang, Y.M.; Lee, B.J.; King, C.T.; ,"Using Mobile Wireless Sensors for In-Situ Tracking of Debris Flows, ", Proc. 6th ACM SenSys, pp. 407-408, Raleigh, NC, USA, 2008.
[15] Lee, H.C.; Banerjee, A.; Fang, Y.M.; Lee, B.J.; King, C.T.; , "Design of a Multi-Functional Wireless Sensor for In-Situ Monitoring of Debris Flows", IEEE Trans. Instrumentation and Measurement, to appear.
[16] Huang, C.F.; Tseng, Y.C.; "The coverage problem in a wireless sensor network", Mobile Networks and Applications, vol. 10, issue 4, pp. 519-528, Aug 2005.
[17] Hung, K. ; Lui, K.; "On perimeter coverage in wireless sensor networks", IEEE Transactions on Wireless Communications, vol. 9, issue 7, pp 2156-2164, Jul 2010.
[18] Bartolini, N.; Calamoneri, T.; Fusco, E. G.; Massini, A.; Silvestri, S.; "Push & Pull: autonomous deployment of mobile sensors for a complete coverage", Wireless Networks, vol.16 issue 3, p.607-625, April 2010
[19] Huang, J.T.; King, C.T.; "Assuring Sensing Quality of Non-spontaneous Moving Sensors via Density Control: Using Drifting Sensors as an Example", Master Thesis, National Tsing Hua University, 2009.
[20] Broch, J.; Maltz, D.A.; Johnson, D.B.; Hu, Y.-C.; Jetcheva, J.;, "A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols", Proc. MOBICOM, pp. 85-97, Dallas, Texas, USA, 1998
[21] Johansson, P.; Larsson, T.; Hedman, N.; Mielczarek, B.; Degermark, M.;, "Scenario-Based Performance Analysis of Routing Protocols for Mobile Ad-Hoc Networks", Proc. MOBICOM, pp. 195-206, Seattle, Washington, USA, 1999
[22] Hong, X.; Gerla, M.; Pei, G.; Chiang, C.-C.; , "A Group Mobility Model for Ad Hoc Wireless Networks", Proc ACM MSWiM, pp. 53-60, Seattle, WA, USA,1999
[23] Tuduce, C.; Gross, T.;, "A Mobility Model Based on WLAN Traces and its Validation", Proc. IEEE INFOCOM, pp. 664-674, Miami, FL(2005)
[24] Kim, M.; Kotz, D.; Kim, S.; , "Extracting a Mobility Model from Real User Traces", Proc IEEE INFOCOM, pp. 1-13, Barcelona, Spain, 2006
[25] Polastre, J.; Szewczyk, R.; Culler, D.; , "Telos: Enabling Ultra-Low Power Wireless Research", Proc. 4th IPSN, pp. 364-369, Los Angeles, CA, USA, 2005.
[26] MSP430,http://focus.ti.com/mcu/docs/mcuprodoverview.tsp?sectionId=95&tabId=140&familyId=342
[27] FPGMMOPA1, http://www.f-tech.com.tw
[28] http://www.nmea.org/content/nmea_standards/nmea_083_v_400.asp
[29] http://www.mathworks.com/
[30] Le Boudec, J.-Y., Vojnovic, M.;, "Perfect Simulation and Stationarity of a Class of Mobility Models", Proc. IEEE INFOCOM, pp. 2743-2754, Miami, FL, USA 2005
[31] Jardosh, A., Belding-Royer, E.M., Almeroth, K.C., Suri, S.; "Towards Realistic Mobility Models for Mobile Ad Hoc Networks", Proc. ACM MOBICOM, pp. 217-229, San Diego, CA, USA, 2003
[32] Camp, T., Boleng, J., Davies, V.: "A Survey of Mobility Models for Ad Hoc Network Research", Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications, vol 2, pp. 483-502. John Wiley & Sons, 2002
[33] Hsu, W.J.; Spyropoulos, T.; Psounis, K.; Helmy, A.; , "Modeling Time-Variant User Mobility in Wireless Mobile Networks," INFOCOM 2007. 26th IEEE International Conference on Computer Communications. IEEE , pp.758-766, May, 2007
[34] Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman & Hall 1998
[35] Zhao, M.; Wang, W.; , "Design and Applications of A Smooth Mobility Model for Mobile Ad Hoc Networks," Military Communications Conference, 2006. MILCOM 2006. IEEE ,pp.1-7, 23-25 Oct. 2006
[36] Tian, J; Hahner, J.; Becker, C.; Stepanov, I.; Rothermel, K.; , "Graph-Based Mobility Model for Mobile Ad Hoc Network Simulation," Simulation Symposium, 2002. Proceedings. 35th Annual , vol., no., pp. 337- 344, 14-18 April 2002
[37] Stockdale, R. J.; McLelland, S. J.; Middleton, R.; Coulthard, T. J.; , Measuring River Velocities using GPS River Flow Tracers (GRiFTers), Earth Surf. Process. Landforms, vol.33, pp.1315–1322, 2008
[38] Ohlmann, J. Carter; White, Peter F.; Sybrandy, Andrew L.; Niiler, P. Peter,; "GPS Cellular Drifter Technology for Coastal Ocean Observing Systems", Journal of Atmospheric and Oceanic Technology, vol. 22, no.9, pp.1381,2005
[39] Paduan, Jeffrey D.; Rosenfeld, Leslie K., "Remotely Sensed Surface Currents in Monterey Bay from Shore-Based HF radar (Coastal Ocean Dynamics Application Radar)" , Journal of Geophysical Research, vol.101, no. c9, pp.20669-20686,1996
[40] Chapman, R.D.; Graber, H.C.;, "Validation of HF Radar Measurements", Oceanography,vol.10, pp.76–79,1997
[41] Bajaj, R.; Ranaweera, S.L.; Agrawal, D.P.; , "GPS: Location-Tracking Technology," Computer , vol.35, no.4, pp.92-94, Apr 2002
[42] Enge, P.; Walter, T.; Pullen, S.; Changdon Kee; Yi-Chung Chao; Yeou-Jyh Tsai; , "Wide Area Augmentation of the Global Positioning System,", Proc. of the IEEE , vol.84, no.8, pp.1063-1088, Aug 1996
[43] M. Arattano and L. Marchi, “Systems and Sensors for Debris flow Monitoring and Warning,” Sensors, vol. 8, pp 2436-2452, Apr. 2008.
[44] A. Carullo, S. Corbellini, M. Parvis, and A. Vallan, “A Wireless Sensor Network for Cold-Chain Monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 5, pp. 1405-1411, May 2009.
[45] Y. K. Kim, R. G. Evans, and W. M. Iversen, “Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 7, pp. 1379-1387, July 2008.
[46] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, and R. Kumar, “Brimon: A Sensor Network System for Railway Bridge Monitoring, ” in Proceeding of the 6th international conference on Mobile systems, applications, and services, Breckenridge, CO, USA, 2008.
[47] W.-Z. Song, R. Huang, and M. Xu., “Air-Dropped Sensor Network for Real-Time High-Fidelity Volcano Monitoring,” in Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, Krakow, Poland, 2009.
[48] Z.Yang, M. Li, and Y. Liu, “Sea Depth Measurement with Restricted Floating Sensors“, in Proceedings of the 28th IEEE International Real-Time Systems Symposium , Tucson, AZ, USA, 2007.
[49] R.G. Lahusen. “Detecting Debris Flows Using Ground Vibrations,” U.S. Geological Survey Fact Sheet 236-96, 1996
[50] M. Jakob and O. Hungr, Debris-flow Hazards and Related Phenomena. Springer, 2005.
[51] J. Hanisch, P. Ergenzinger, and M. Bonte, “Dumpling-An “Intelligent” Boulder for Studying Internal Processes of Debris Flows,” in Proceedings of the Third International Conference on Debris-flow Hazard Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, September 2003.
[52] M. Spazzapan, J. Petrovčič, and M. Mikoš, “A New Tracer for Monitoring Dynamics of Sediment Transport in Turbulent Flows,” Acta hydrotechnica, vol. 22, no. 37,pp, 135-148, 2004.
[53] Y. Itakura, T. Kitajima, K. Endo, and T. Sawada, “A New Double Dual-Axes Accelerometer Debris Flow Detection System,” in Proceedings of the Second International Conference on Debris-flow Hazard Mitigation: Mechanics, Prediction, and Assessment, Taipei, Taiwan, Aug 2000.
[54] http://www.zostrich.com/index.html
[55] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling Ultra-Low Power Wireless Research,” in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, USA, 2005.
[56] http://www.ti.com/msp430
[57] http://focus.ti.com/docs/prod/folders/print/cc2420.html
[58] http://www.tinyos.net/
[59] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor Networks,” in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 2004.
[60] Soil and Water Conservation Bureau of Taiwan, ROC, http://en.swcb.gov.tw/
[61] www.analog.com/en/ADXL330/productsearch.html
[62] http://www.sentilla.com/pdf/eol/tmote-connect-datasheet.pdf
[63] RF Castle Electronics Co., Ltd., http://www.rfcastle.com
[64] http://www.geospacelp.com/
[65] Central Weather Bureau of Taiwan, ROC, http://www.cwb.gov.tw/eng/index.htm
[66] Crossbow technology, http://www.xbow.com
[67] eKo: Wireless Crop and Environmental Monitoring System, http://www.xbow.com/eko/index.aspx
[68] C. A. Bonao, J. Brown, Z. He, R. Utz and V. Thiemo, “Low-Power Radio Communication in Industrial Outdoor Deployments: The Impact of Weather Conditions and ATEX-Compliance,” in Proceedings of the 1st International Conference on Sensor Networks Applications, Experimentation and Logistics, Athens, Greece, 2009.
[69] http://focus.ti.com/docs/prod/folders/print/cc2591.htm