簡易檢索 / 詳目顯示

研究生: 黃書于
Huang, Shu-Yu
論文名稱: 雙面鍍製於矽懸臂之高應力氮化矽薄膜之應力與機械損耗研究
Stress and mechanical loss study for the double-side coated SiNx films on silicon cantilever
指導教授: 趙煦
Chao, Shiuh
口試委員: 李正中
陳至信
田春林
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 94
中文關鍵詞: 氮化矽薄膜機械損耗薄膜應力雙面鍍膜
外文關鍵詞: silicon nitride film, mechanical loss, stress, double-side coating
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射干涉重力波組織 (LIGO, Laser Interferometer Gravitational wave Observatory)建造雷射干涉重力波偵測器作為天文觀測站,欲透過大型麥克森干涉儀直接偵測到重力波訊號,以觀測星體變化等天文現象。然而,重力波的訊號非常微弱,必須盡可能降低系統與環境雜訊才能進行觀測。此偵測系統整體雜訊的最低處約為頻率40~400 Hz區間,在此頻率區間的雜訊主要由Quantum noise與Coating Brownian noise主導,其中的Coating Brownian noise是反射鏡上光學薄膜產生的一種熱擾動雜訊(thermal noise),主要受薄膜材料與環境溫度影響。此外,根據統計力學中的Fluctuation-dissipation theorem可知,熱擾動雜訊與機械損耗為正比關係,透過量測機械損耗便可得知熱擾動雜訊的程度。因此本實驗室針對偵測系統最靈敏的頻率區間(40~400 Hz),研究低機械損耗的薄膜材料,以降低反射鏡上光學薄膜的熱擾動雜訊,達到提高偵測系統靈敏度之目的。
    參考文獻指出高應力氮化矽薄膜具有非常低的機械損耗,且氮化矽薄膜降至低溫環境下能夠得到更低的機械損耗。然而,這些文獻所使用的試片共振頻率高達百萬赫茲(MHz)以上,且應用目的與我們不同,因此我們針對雷射干涉重力波偵測器最靈敏的頻率區間探討高應力氮化矽薄膜的機械損耗與薄膜特性。
    於本實驗室先前研究中,藉由調整電漿輔助化學氣相沉積系統(PECVD)的製程氣體流量比(NH3/SiH4)改變薄膜組成成分,將五種不同成分的氮化矽薄膜(SiN0.40、SiN0.49、SiN0.65、SiN0.79、SiN0.87)沉積於矽懸臂基板上並分析薄膜特性與機械損耗。結果顯示隨著氣體流量比增加,薄膜折射率降低、應力增加且機械損耗也逐漸降低。然而,在薄膜成分為SiN0.87時矽懸臂的彎曲模態(bending mode)機械損耗出現反轉現象(inversion),導致其薄膜機械損耗無從得知。我們針對實驗結果進行分析,推測這種現象是因為薄膜的張應力(tensile stress)過高使矽懸臂彎曲,導致矽懸臂基板本身的thermoelastic loss降低,影響彎曲模態的機械損耗。因此,本論文將利用雙面鍍膜的方式改善高應力SiN0.87薄膜造成矽懸臂彎曲問題,並取得SiN0.87薄膜的機械損耗為主要研究方向。另一部分,在本論文中將針對本實驗室的室溫機械損耗量測系統仍存在之可能損耗來源進行研究與分析,以改善並減少系統量測誤差。


    In order to detect the gravitational wave (GW) directly to confirm the general theory of relativity from Albert Einstein and for future gravitational wave astronomy, the international Laser Interferometer Gravitational Wave Observatory (LIGO) utilize Michelson interferometer to detect GW signals. However, the signal of gravitational waves is extreme weak, so the system noise and the environment noise should be reduced as low as possible. In all of the background noise, the coating Brownian noise which caused by optical coating is a limiting source of thermal noise at 40-400 Hz. It depends on the properties of coating materials and surrounding temperature. Thus, investigating a low mechanical loss material to reduce the coating Brownian noise is necessary.
    In our previous work, the stress of the SiNx increased with value of x. Moreover, it was found that high stress SiNx film has lower mechanical loss. Even mechanical loss of the high stress coated cantilever was lower than that of the uncoated. This unusual phenomenon is referred to as "inversion" for high stress SiN0.87 film. The inversion appears in most of the bending modes, but none of the torsion modes. It may attribute to reduction of the thermoelastic loss of the silicon substrate, which were warped due to the tensile stress of the SiN0.87 film. Because the torsion modes of the silicon cantilever are not susceptible to thermoelastic loss. In this paper, we studied the fabrication, material properties and mechanical loss of SiN0.87 film which is deposited by PECVD in detail. Finally, we developed a formula by considering the energy dissipation, and then substitute the results of measurement into the formula to obtain the loss angle of high stress SiN0.87 film.

    Key word:silicon nitride film, stress, mechanical loss, double-side coating, Young’s modulus, refractive index, extinction coefficient.

    摘要 I 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 導論 1 1-1 引言 1 1-2 研究動機 3 1-2-1 高應力氮化矽薄膜的機械損耗 3 1-2-2 高應力氮化矽薄膜之彎曲模態機械損耗反轉問題 6 1-3 論文架構 8 第二章 單晶矽懸臂基板與高應力氮化矽薄膜製程 10 2-1 單晶矽懸臂基板製程與共振模態 10 2-1-1 矽懸臂基板製程與結構 10 2-1-2 矽懸臂基板的共振模態 12 2-2 高應力氮化矽薄膜製程與薄膜特性分析 13 2-2-1 薄膜沉積系統介紹與製程 13 2-2-2 薄膜折射係數、消光係數、厚度與楊氏係數分析 16 2-2-3 雙面鍍膜之薄膜殘留應力分析 18 第三章 室溫機械損耗量測系統介紹與問題改善 23 3-1 機械損耗理論與室溫機械損耗量測系統介紹 23 3-2 機械損耗來源分析 26 3-2-1 機械損耗來源 26 3-2-2 Thermoelastic loss 27 3-2-2-1 矽懸臂基板厚度對thermoelastic loss之影響 27 3-2-2-2 針對thermoelastic loss設計特定共振頻率之矽懸臂基板尺寸 31 3-2-3 夾持損耗(Clamping loss) 32 3-3 室溫機械損耗量測系統問題改善 33 3-3-1 夾持矽懸臂的扭力對機械損耗之影響 33 3-3-2 夾具上墊片對機械損耗之影響 41 3-4 矽懸臂基板的機械損耗統計與分析 43 3-5 結果討論 53 第四章 克服彎曲模態機械損耗之反轉問題 54 4-1 薄膜機械損耗理論 54 4-1-1 彎曲模態之薄膜機械損耗 54 4-1-2 扭轉模態之薄膜機械損耗 55 4-2 雙面鍍膜之薄膜機械損耗理論 56 4-3 量測結果與彎曲模態薄膜機械損耗分析 58 4-4 薄膜內部應力對扭轉模態機械損耗之影響 61 4-5 雙面鍍膜的粗糙介面之機械損耗分析 63 4-6 結果討論 65 第五章 總結與未來展望 67 5-1 總結 67 5-2 未來展望 69 附錄A 薄膜殘留應力統整表格 71 附錄B 夾持矽懸臂扭力對機械損耗影響之測試 75 附錄C 雙面鍍膜之薄膜機械損耗理論公式推導與各模態機械損耗表格 78 附錄D 以矽懸臂基板的粗糙面及拋光面量測之機械損耗比較 80 附錄E 各種矽懸臂試片之薄膜特性與機械損耗統整表格 83 參考文獻 88

    [1] LIGO Scientific Collaboration Group. Instrument science white paper. Oct. 2011, LIGO- T1100309-v5: 7
    [2] H. B. Callen, T. A. Weltont. Irreversibility and generalized noise. Phys. Rev., Jul. 1951, 83: 34-40
    [3] R. F. Greene, H. B. Callen. On the formalism of thermodynamic fluctuation theory. Phys. Rev., Sep. 1951, 83: 1231-1235
    [4] H. B. Callen, R. F. Greene. On a theorem of irreversible thermodynamics. Phys. Rev., Jun. 1952, 86: 702-710
    [5] K. Y. Yasumura, T. D. Stowe, E. M. Chow, et al. Quality Factors in Micron- and Submicron-Thick Cantilevers. J. Microelectromechanical Syst., Mar. 2000, 9: 117-125
    [6] B. E. A. Saleh, M. C. Teich. Fundamentals of photonics. New Jersey: John Wiley & Sons, 2007, 2, Ch10: 365-402, ISBN: 978-0-471-35832-9
    [7] I. W. Martin. Studies of materials for use in future interferometric gravitational wave detectors. Ph. D. thesis, University of Glasgow, Feb. 2009
    [8] K. Hejduk, K. Pierscinski, W. Rzodkiewicz, et al. Dielectric coatings for infrared detectors. Opt. Appl., 2005, XXXV: 437-442
    [9] S. S. Verbridge, D. F. Shapiro, H. G. Craighead, et al. Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett., 2007, 7: 1728-1735
    [10] D. R. Southworth, R. A. Barton, S. S. Verbridge, et al. Stress and silicon nitride: A crack in the universal dissipation glasses. Phys. Rev. Lett., Jun. 2009, 102: 225503

    [11] B. M. Zwickl, W. E. Shanks, A. M. Jayich, et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett., 2008, 92: 103125
    [12] C. Cheng. Cryogenic mechanical loss measurement system setup and annealing effect on the mechanical loss of the nano-layer coatings. Master thesis, National Tsing Hua University, 2015
    [13] V. P. Mitrofanov, S. Chao, H. W. Pan, et al. Technology for the next gravitational wave detectors. Sci. China-Phys. Mech. Astron., 2015, 58: 120404
    [14] S. Chao. Optical coatings and thermal noise in precision measurement. Cambridge University Press, 2012, Ch2: 6-19, ISBN: 978-1-107-00338-5
    [15] D. G. Blair, E. J. Howell, L. Ju, et al. Advanced gravitational wave detectors. Cambridge University Press, 2012, ISBN: 978-0-521-87429-8
    [16] P. R. Saulson. Fundamentals of interferometric gravitational wave detectors. World Scientific, 1994, ISBN: 981-02-1820-6
    [17] S. Chao, H. W. Pan, C. W. Lee, et al. Mechanical loss of silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) method. LVC meeting, Washington, DC, USA, Mar. 2013, LIGO-G1300171
    [18] S. Chao, H. W. Pan, Y. H. Juang, et al. Mechanical loss of silicon cantilever coated with a high-stress SiNx film. LVC meeting, Stanford University, Aug. 2014, LIGO-G1400851
    [19] H. W. Pan et al. Mechanical loss of silica film on silicon cantilever deposited by PECVD method. LVC Meeting, Caltech, Pasadena, California, USA, Mar. 2015, LIGO-G1500194
    [20] H. W. Pan et al. Stress effect on mechanical loss of SiNx and α-Si film deposited by PECVD method on silicon cantilever. LVC Meeting, Caltech, Pasadena, California, USA, Mar. 2015, LIGO- G1500195
    [21] S. Chao, H. W. Pan, S. Y. Huang, et al. Room temperature mechanical loss of high stress silicon nitride film measured by cantilever ring-down method on double-side coated cantilever. LVC meeting, Budapest, Hungary, Sep. 2015, LIGO-G1501068
    [22] Y. H. Juang. Stress effect on mechanical loss of the SiNx film deposited with PECVD method on silicon cantilever and setup for the loss measurement improvement. Master thesis, National Tsing Hua University, Aug. 2014
    [23] W. Y. Wang. Study of mechanical vibration and loss of silicon cantilever for development of the high-reflection mirror in the laser interference gravitational wave detector. Master thesis, National Tsing Hua University, Aug. 2013
    [24] B. S. Berry, W. C. Pritchet. Vibrating reed internal friction apparatus for films and foils. IBM journal of research and development, 1975, 19: 334
    [25] C. W. Lee. Study of the material properties and the mechanical loss of the silicon nitride films deposited by PECVD method on silicon cantilever for laser interference gravitational wave detector application. Master thesis, National Tsing Hua University, Aug. 2013
    [26] D. L. Smith, A. S. Alimonda, C. C. Chen, et al. Mechanism of SiNxHy deposition from NH3-SiH4 plasma. J. Electrochem. Soc., Feb. 1990, 137: 614-623
    [27] J. N. Chiang, D. W. Hess. Mechanistic considerations in the plasma deposition of silicon nitride films. J. Electrochem. Soc., Jul. 1990, 137: 2222-2226
    [28] B. Shu, H. Zhang, R. Xuan, et al. Fabrication of high compressive stress silicon nitride membrane in strained silicon technology. IEEE, 2005, 365-367
    [29] D. Necas, V. Perina, D. Franta, et al. Optical characterization of non-stoichiometric silicon nitride films. Phys. Stat. Sol. (c), Feb. 2008, 5: 1320-1323

    [30] H. Huang, A. Suvorova, K. J. Winchester, et al. Characteristics of low temperature PECVD silicon nitride for MEMS structural materials. Int. J. Mod. Phys. B, 2006, 20: 3799-3804
    [31] P. Morin, G. Raymond, D. Benoit, et al. A comparison of the mechanical stability of silicon nitride films deposited with various techniques. Appl. Surf. Sci., 2012, 260: 69-72
    [32] M. Ohring. Materials science of thin films: deposition and structure. Academic press, 2001, 2, ISBN: 978-0-125-24975-1
    [33] G. E. J. Jr, F. A. Modine. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett., 1996, 69: 371
    [34] G. E. J. Jr, F. A. Modine, P. Doshi, et al. Spectroscopic ellipsometry characterization of thin-film silicon nitride. Thin Solid Films, 1998, 313-314: 193-197
    [35] W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res., Jun 1992, 7: 1564-1583
    [36] 李正中. 薄膜光學與鍍膜技術. 藝軒圖書出版社, 2012, 第七版: 413-420
    [37] G. G. Stoney. The tension of metallic films deposited by electrolysis. Proceedings The Royal of Society A, Jan. 1909, 82: 172-175
    [38] Tencor. FLX-2320 Thin film stress measurement user manual. Rev. B, 1995, 274526
    [39] J. Laconte, F. Iker, S. Jorez, et al. Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectronic Engineering, Aug. 2004, 76: 219-226

    [40] S. T. Thornton, J. B. Marion. Classical dynamics of particles and systems. Brooks Cole, 2003, 5: 109-121, ISBN: 978-0-534-40896-1
    [41] T. J. Quinna, C. C. Speake,R. S. Davis, et al. Stress-dependent damping in Cu-Be torsion and flexure suspensions at stresses up to 1.1 GPa. Phys. Lett. A, Jan. 1995, 197: 197-208
    [42] J. S. Oul. Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers. Master thesis, National Tsing Hua University, Jul. 2012
    [43] R. G. Christian. The theory of oscillating-vane vacuum gauges. Pergamon Press Ltd, Feb. 1966, 16: 175-178
    [44] A. W. Heptonstall. Characterisation of Mechanical Loss in Fused Silica Ribbons for use in Gravitational Wave Detector Suspensions. Ph. D. thesis, University of Glasgow, Aug. 2004
    [45] D. F. McGuigan, C. C. Lam, R. Q. Gram, et al. Measurements of the mechanical Q of single- crystal silicon at low temperature. Journal of Low Temperature Physics, Jun. 1978, 30: 621-629
    [46] A. S. Nowick, B. S. Berry. Anelastic relaxation in crystalline solid. New York: Academic Press, 1972, ISBN: 978-0-125-22650-9
    [47] J. B. Wachtman, Jr., W. E. Tefft, et al. Exponential temperature dependence of Young’s modulus for several oxides. Phys. Rev., Jun. 1961, 122: 1754
    [48] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229
    [49] S. Reid, G. Cagnoli, D. R. M. Crooks, et al. Mechanical dissipation in silicon flexures. Phys. Lett. A, Dec. 2006, 351: 205

    [50] U. Rabe, K. Janser, W. Arnold. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. of Sci. Inst., Jun. 1996, 67: 3281
    [51] F. J. Elmer, M. Dreier. Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium. J. Appl. Phys., Mar. 1997, 81: 7709
    [52] D. R. M. Crooks. Mechanical loss and its significance in test mass mirrors of gravitational wave detectors. Ph.D. thesis, University of Glasgow, 2002, 121-123
    [53] X. Liu, R. O. Pohl. Low-energy excitations in amorphous films of silicon and germanium. Phys. Rev. B, Oct. 1998, 58: 9067-9081
    [54] B. E. W. Jr., R. O. Pohl. Thin films: stresses and mechanical properties V: Elastic properties of thin films. Mater. Res. Soc., Pittsburgh, Jun. 1995, No.356: 567-572, ISBN: 978-1-558-99257-3
    [55] H. C. Tsai, W. Fang. Determining the Poisson's ratio of thin film materials using resonant method. Sensors and Actuators A, 2003, 103: 377-383
    [56] M.A. Hopcroft. The Young's modulus of silicon. http://silicon.mhopeng.ml1.net/ Silicon/, Jun. 2012, 1-4
    [57] A Stoffel, A. Kovacs, W. Kronast, et al. LPCVD against PECVD for micromechanical applications. J. Micromech. Microeng, 1996, 6: 1–13
    [58] S. Sugiyama, K. Shimaoka, O. Tabata. Surface micromachined miro-diaphragm pressure sensors. Toyota Central Res. & Dev. Lab. Inc., Aichi, Japan, 1991, 188-191
    [59] T. Y. Zhang, Y. J. Su, C. F. Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta mater., Mar. 2000, 48: 2843-2857
    [60] B. A. Walmsley, Y. Liu, X. Z. Hu, et al. Poisson’s ratio of low-temperature pecvd silicon nitride thin films. J. Microelectromechanical Syst., Jun. 2007, 16: 622-627
    [61] V. Ziebart, O. Paul, U. Munch, et al. Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films. Cambridge University Press, 1998, 27-32, ISBN: 978-1-107-41330-6
    [62] S. S. Verbridge, J. M. Parpia. High quality factor resonance at room temperature with nanostrings under high tensile stress. J. Appl. Phys., Jun. 2006, 99: 124304
    [63] R Flaminio, J. Franc, C. Michel, et al. A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors. Class. Quantum Grav., Apr. 2010, 27: 084030
    [64] S. J. Wang. Fabrication and annealing study of the ion beam sputtered nano-layer structures in the high reflective dielectric mirror for the laser interference gravitation wave detector. Master thesis, National Tsing Hua University, 2013
    [65] Z. Liu, D. L. DeVoe. Micromechanism fabrication using silicon fusion bonding. Robot. Comput. Integr. Manuf., 2001, 17: 131-137

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE