研究生: |
陳冠廷 Chen, Kuan-Ting |
---|---|
論文名稱: |
Molecular Dynamics Simulation of Melting and Secondary Nucleation of Syndiotactic Polypropylene |
指導教授: |
蘇安仲
Su, An-Chung |
口試委員: |
陳信龍
鄭有舜 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | sPP |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Melting and surface nucleation behavior of syndiotactic polypropylene (sPP) in crystalline Form II were studied via molecular dynamics (MD) simulation. Accelrys Material StudioR with built-in engines for initial system generation and molecular dynamic simulation (Forcite) was adopted. For the study of melting, an NPT ensemble of 2 × 2 × 15 Form II unit cells under PCFF force field and periodic boundary conditions was chosen. The MD box for the study of secondary nucleation corresponded to an NVT ensemble of 4 × 6 × 15 unit cells under DREIDING force field, with the central 5 unit cells along the c-axis artificially frozen to represent crystal surface.
Melting was observed to start from the fold surface and then spreading to the central region of the lamellar crystal. Instead of axial translation, our MD observations indicated that the melting process in sPP involves the thermal expansion of lattice, disruption of the helical conformation, followed by lateral expansion (increased inter-chain distance) and further randomized chain conformation.
For secondary nucleation, our MD simulation results indicated that trans-like conformation is preferentially formed both near the crystal surface and in the bulk matrix at a high supercooling of ΔT ≈ 150 K. Instead of stem attachment assumed in the Hoffman-Lauritzen scenario, we have observed only the increase of trans-like structures within the MD simulation time up to 55 ns. The trans-conformers in trans-like sequences were observed to extend along the chain but then became limited by sequences of gauche-like conformers. The trans-like conformers formed initially in the vicinity of (but not necessarily on) the crystal surface and then started to spread to regions deeper in the bulk matrix after an extended MD time of 35 ns. These fluctuation-induced trans-like conformers were formed in a sequential manner, piling one on top of another without full contact. These MD results are consistent with our experimental observations that the nucleation stage of sPP nucleation involves the formation of trans-rich sequences; this transformation from all-trans to helical (TTGG) sequences appears to serve as the rate determining step in sPP crystallization.
1. Nikolaos, A.; Doros, N. Macromolecules 2010, 43, 5455-5469.
2. Lan, Y. K.; Su, A. C. Macromolecules 2010, 43, 7908-7912.
3. Wunderlich, B. Macromolecular Physics, Vol. 2; Academic Press: New York, 1976; Ch. 5.
4. Su, C. H.; Jeng, U.; Chen, S. H.; Lin, S. J.; Wu, W. R.; Chuang, W. T.; Tsai, J. C.; Su, A. C. Macromolecules 2009, 42, 6656-6664.
5. Welch, P.; Muthukumar, M. Phys. Rev. Lett. 2001, 87, 218301-218304.
6. Lotz, B.; Cais, R.E.; Lovinger, A. J. Macromolecules 1988, 21, 2375-2382.
7. Lotz, B.; Wittmann, J.C.; Lovinger, A.J. Polymer 1996, 37, 4979-4992.
8. Marchetti, A.; Martuscelli, E. J. Polym. Sci., Polym. Phys. Ed. 1974, 12, 1649-1666.
9. De Rosa, C.; Corradini, P. Macromolecures 1993, 26, 5711-5718.
10. Chatani, Y.; Maruyama, H.; Noguchi, K. J. Polym. Sci., Polym. Lett. 1990, 28, 393-398.
11. Chatani, Y.; Maruyama, H.; Asanuma, T.; Shiomura, T. J. Polym. Sci., Polym. Phys. 1991, 29, 1649-1652.
12. Kummetha, R.; Tashiro, K.; Sakurai, T.; Yamaguchi, N.; Sasaki, S.; Masunaga, H.; Takata, M.
Macromolecules 2009, 42, 4191-4199.
13. Point, J.J. Macromolecules 1979, 12, 770-775.
14. Wunderlich, B. Faraday Discuss. Chem. Soc., 1979, 68, 239-243
15. Berkhard, W.; Aspy, R. J. Polym. Sci., Polym. Phys, Ed. 1974, 12, 255-263.
16. Reiter, G.; Sommer, J. J. Chem. Phys. 2000, 112, 4376-4383.
17. Hsieh, C. C. M.S. Thesis, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, 2007.
18. Stephen, L.; Barry, D; William, A. J . Phys. Chem 1990, 94, 8897-8909.
19. Sun, H. J. Phys. Chem. B 1998, 102, 7338-7364.
20. Natta, G.; Peraldo, M.; Allegra, G. Macromol. Chem. 1964, 75, 215-216.
21. Berendsen, C.; Postma, M.; Van Gunsteren, F.;DiNola, A. J. Chem.Phys. 1984, 81, 3684-3690.
22. Hoover, W.G. Phys. Rev. A 1986, 34, 2499-2500.
23. Auriemma, A.; De Rosa, C.; Ballesteros, R.; Corradini, P. Macromolecules 1997, 30, 6586-6591.
24. Vittorla, V.; Guadagno, L. Macromolecules 2000, 33, 6200-6204.
25. Nakaoki, T.; Ohira, Y.; Hayashi, H.; Horii, F. Macromolecules 1998, 31, 2705-2706.
26. Sozzani, P.; Galimberti, M.; Balbontin, G. Makromol. Chem. Rapid Commun. 1992, 13, 305-310.
27. Sozzani, P.; Simonutti, R.; Comotti, A. Magn. Res. Chem.1994, 32, S45-S52.
28. Hoffman, J. D. J. Chem. Phys. 1958, 29, 1192-1193.
29. Lauritzen, J. I.; Hoffman, J. D. J. Appl. Phys. 1973, 44, 43