簡易檢索 / 詳目顯示

研究生: 林芳瑜
Lin, Fang-Yu
論文名稱: 克雷白氏肺炎桿菌CG43全基因體解序、抗酸轉錄體分析與尿素酶基因群功能探討
Whole Genome Sequencing, Transcriptome Analysis of Acid Response, and Urease Gene Cluster Characterization of Klebsiella pneumoniae CG43
指導教授: 張晃猷
Chang, Hwan-You
口試委員: 賴怡琪
Lai, Yi-Chyi
高茂傑
Kao, Mou-Chieh
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 克雷白氏肺炎桿菌基因體定序轉錄體尿素酶
外文關鍵詞: Klebsiella pneumoniae, genome sequence, transcriptome, urease
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 克雷白氏肺炎桿菌屬腸道菌科,為一伺機性病原菌,感染宿主後會導致肺炎、泌尿道感染、腦膜炎、菌血症、敗血症等。在台灣,克雷白氏肺炎桿菌是主要造成糖尿病病人肝膿瘍的病原。引發肝膿瘍之克雷白氏肺炎桿菌其莢膜血清型大多數是屬於 K1 和 K2。克雷白氏肺炎桿菌 CG43 是從台灣分離自肝膿瘍病患,毒性較強的 K2 血清型菌株。本研究中將克雷白氏肺炎桿菌 CG43 基因體完整解序,其長度為 5,166,857 bp,與克雷白氏肺炎桿菌 NTUH-K2044 和 克雷白氏肺炎桿菌 MGH 78578 相似度分別為 93 % 及 94 %。克雷白氏肺炎桿菌 CG43 有 203 個不同於 MGH 78578 與 NTUH-K2044 的基因。對於腸內菌而言,抗酸能力是非常重要的,我們藉由轉錄體定序分析克雷白氏肺炎桿菌 CG43在酸性環境時基因表現的情況,結果顯示有 4.94 % 基因被誘導,18.34 % 基因被抑制表現超過 2 倍,主要分別為伴隨蛋白及麥芽糖操縱子相關之基因。此外,在克雷白氏肺炎桿菌 CG43 中存有兩套尿素酶基因組,與大多數克雷白氏肺炎桿菌只具有一套尿素酶基因組不同。尿素酶可以將尿素分解成二氧化碳和氨,提供氮源並中和酸性環境,幫助細菌生存於酸性環境。本研究建構三種尿素酶突變株 (ΔureA1、ΔureA2 與 ΔureA1 ΔureA2)。我們發現 ΔureA1 和 ΔureA1 ΔureA2在以尿素取代氯化銨的 M9 培養基中的生長的情形稍差。以 Christensen’s Urea Agar 測定尿素酶活性,結果顯示ΔureA1 和 ΔureA1 ΔureA2 幾乎無尿素酶活性。此外,在酸性環境下,野生株和三種突變株 (ΔureA1、ΔureA2 和 ΔureA1 ΔureA2) 有相似的生長曲線。根據這些結果我們推測尿素酶對於克雷白氏肺炎桿菌 CG43 在一般培養條件下之耐酸能力並非重要因子。本研究所完成之完整的克雷白氏肺炎桿菌 CG43 基因體序列可以提供我們更多資訊以進一步探討其致病因子。


    Klebsiella pneumoniae is an important opportunistic pathogen that causes various human diseases such as pneumonia, urinary tract infection, meningitis, bacteremia and septicemia. In Taiwan, K. pneumoniae is the predominant pathogen responsible for pyogenic liver abscess in diabetic patients and K1 and K2 serotypes account for the majority of the isolates. K. pneumoniae CG43 was originally isolated from a patient with pyogenic liver abscess in Taiwan. It is a highly virulent K2 serotype strain. In this study, the whole genome sequence of K. pneumoniae CG43 was determined and annotated. The genome is 5,166,857 bp in length. The similarity of the CG43 genome sequence with that of K. pneumoniae NTUH-K2044 and MGH 78578 are 93 % and 94 %, respectively. K. pneumoniae CG43 has 203 open reading frames distinct from K. pneumoniae NTUH-K2044 and K. pneumoniae MGH 78578. Furthermore, because the ability of acid resistance is important for Enterobacteriaceae, we also performed transcriptome analysis of K. pneumoniae CG43 gene expression profile under acidic growth conditions. The data indicate that 4.94 % genes in CG43 genome were induced, while 18.34 % genes were repressed. Most of the up-regulated genes are associated with chaperone-related function and many of the down-regulated genes belong to maltose regulon. Besides, there are two urease gene clusters in K. pneumoniae CG43, different from most of K. pneumoniae that has only one urease gene cluster. Urease catalyzes the hydrolysis of the urea into carbon dioxide and ammonia. Besides providing nitrogen sources, the reaction can neutralize acidic environments, allowing pathogenic bacteria to survive the acidic conditions. Three types of urease mutant strains (ΔureA1, ΔureA2 and ΔureA1 ΔureA2) were constructed in CG43. Growth of ΔureA1 and ΔureA1 ΔureA2 double mutant was reduced in M9 minimal medium using urea as the sole nitrogen source. The two mutant strains lack urease activity as determined by Christensen’s Urea Agar. In addition, the growth of wild type and three urease mutant strains has no difference under acidic environment. The result suggests that urease is not a major factor contributing to acid tolerance of K. pneumoniae CG43 under normal cultural condition. To sum up, the complete CG43 genome sequence will provide critical information for future analysis of the virulence factors in the bacterium.

    中文摘要 I Abstract III 誌謝 V 縮寫字對照表 VII 目錄 VIII 表目錄 XI 圖目錄 XII 壹、 前言 1 貳、 材料與方法 6 2.1. 菌株、質體與生長環境 6 2.2. 染色體 DNA 萃取 6 2.3. 基因體定序、組裝、對應與填補 7 2.4. 基因體註解 7 2.5. 酸逆境處理 7 2.6. RNA萃取 8 2.7. 轉錄體 (transcriptome) 定序與分析 9 2.8. RNA 反轉錄反應 (reverse transcription) 9 2.9. 即時定量聚合酶連鎖反應 (real-time quantitative PCR) 10 2.10. 質體 DNA 萃取 10 2.11. 聚合酶連鎖反應 (Polymerase chain reaction,PCR) 11 2.12. 限制酵素處理 (digestion) 與接合作用 (ligation) 11 2.13. 製備勝任細胞 12 2.14. 熱休克轉型法 (heat shock transformation) 12 2.15. 構築 K. pneumoniae CG43 ureA1 與 ureA2 突變株 13 2.16. 細菌生長曲線測量 14 2.17. 尿素酶活性分析 14 2.18. 酸性環境下的生長曲線 15 參、 結果 16 3.1. K. pneumoniae CG43 基因體之特徵 16 3.2. 比較 K. pneumoniae CG43、K. pneumoniae MGH 78578 和 K. pneumoniae NTUH-K2044 所擁有基因之差異 16 3.3. 分析K. pneumoniae CG43 (K2) 之莢膜基因組組成並與 K. pneumoniae NTHU-K2044 (K1) 比較 17 3.4. K. pneumoniae CG43 纖毛基因組 17 3.5. 預測K. pneumoniae CG43 第六型分泌系統之基因組示意圖 18 3.6. 預測K. pneumoniae CG43 的酸適應島嶼基因組 19 3.7. K. pneumoniae CG43 在酸性環境下其基因表達情況 20 3.8. K. pneumoniae CG43 的兩套尿素酶基因組之第一個被轉錄基因,在經過酸處理後的表現量 21 3.9. 比對 K. pneumoniae 中 UreA 之相似度 21 3.10. 建構 ureA 基因缺損突變株 (ΔureA1、ΔureA2 與 ΔureA1 ΔureA2) 22 3.11. K. pneumoniae CG43 野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1ΔureA2 之生長曲線與菌落型態 22 3.12. K. pneumoniae CG43 野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1 ΔureA2) 尿素酶活性分析 23 3.13. K. pneumoniae CG43 野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1 ΔureA2) 在酸性環境下的生長曲線 24 3.14. K. pneumoniae CG43 野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1ΔureA2) 培養於有無添加尿素的 pH 4.4 LB 培養液,六小時後環境酸鹼值變化 24 肆、 討論 26 伍、 參考文獻 30 表目錄 表一、菌株與質體 40 表二、引子序列表 41 表三、比較K. pneumonia CG43、K. pneumoniae NTUH-K2044 和 K. pneumoniae MGH 78578 基因體特徵 42 表四、K. pneumoniae CG43、K. pneumoniae NTUH-K2044 和 K. pneumoniae MGH 78578 纖毛基因組的比較 43 表五、在轉錄體定序中,細菌生長於 pH 7與 pH 3 表現量相差兩倍的基因數量 44 表六、K. pneumoniae CG43 在 pH 3 環境中被誘導表現量最高的前 50 名基因 45 表七、K. pneumoniae CG43 在 pH 3 環境中被抑制表現量最高的前 50 名基因 47 表八、細菌在 pH 4.4 LB 培養 6 小時後上清液的 pH 值 50 圖目錄 圖一、K. pneumoniae CG43 基因體之圓形示意圖 51 圖二、K. pneumoniae CG43、K. pneumoniae NTUH-K2044 和 K. pneumoniae MGH 78578 所擁有基因之差異 52 圖三、比較 K. pneumoniae NTHU-K2044 (K1) 及 CG43 (K2) 之莢膜基因組組成 53 圖四、K. pneumoniae CG43 纖毛基因組示意圖 54 圖五、K. pneumoniae CG43 中所預測第六型分泌系統之基因組示意圖 55 圖六、K. pneumoniae CG43 染色體上預測的酸適應島嶼基因組 56 圖七、K. pneumoniae CG43 兩套尿素酶基因組之第一個被轉錄之基因,在經過酸處理後的表現量 57 圖八、比對K. pneumoniae CG43、K. pneumoniae K2044 和 K. pneumoniae MGH 78578中 UreA 之相似度 58 圖九、建構K. pneumoniae CG43 ΔureA (ureA1 與 ureA2) 突變株流程圖 59 圖十、利用聚合酶連鎖反應確認 K. pneumoniae CG43 ΔureA1、ΔureA2 與 ΔureA1 ΔureA2突變株 60 圖十一、K. pneumoniae CG43 野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1 ΔureA2) 之生長曲線 62 圖十二、K. pneumoniae CG43 野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1 ΔureA2) 在不同培養基的菌落型態 64 圖十三、檢測 K. pneumoniae CG43野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與ΔureA1 ΔureA2) 的尿素酶活性 65 圖十四、比較 K. pneumoniae CG43野生株 (WT) 與突變株 (ΔureA1、ΔureA2 與 ΔureA1 ΔureA2) 在酸性條件的生長情形 66

    Arakawa, Y., Wacharotayankun, R., Nagatsuka, T., Ito, H., Kato, N. & Ohta, M. (1995). Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. Journal of Bacteriology 177, 1788-1796.

    Boddicker, J. D., Anderson, R. A., Jagnow, J. & Clegg, S. (2006). Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infection and Immunity 74, 4590-4597.

    Burne, R. A. & Chen, Y.-Y. M. (2000). Bacterial ureases in infectious diseases. Microbes and Infection 2, 533-542.

    Chagneau, C., Heyde, M., Alonso, S., Portalier, R. & Laloi, P. (2001). External-pH-Dependent Expression of the Maltose Regulon and ompF Gene in Escherichia coli Is Affected by the Level of Glycerol Kinase, Encoded byglpK. Journal of Bacteriology 183, 5675-5683.

    Chang, H.-Y., Lee, J.-H., Deng, W.-L., Fu, T.-F. & Peng, H.-L. (1996). Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microbial Pathogenesis 20, 255-261.

    Christensen, W. B. (1946). Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology 52, 461-466.

    Collins, C. M. & D'Orazio, S. E. (1993). Bacterial ureases: structure, regulation of expression and role in pathogenesis. Molecular Microbiology 9, 907-913.

    Das, S. & Chaudhuri, K. (2003). Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In silico Biology 3, 287-300.

    Eguchi, Y., Ishii, E., Hata, K. & Utsumi, R. (2011). Regulation of acid resistance by connectors of two-component signal transduction systems in Escherichia coli. Journal of Bacteriology 193, 1222-1228.

    Favre-Bonte, S., Joly, B. & Forestier, C. (1999). Consequences of reduction of Klebsiella pneumoniae capsule expression on interactions of this bacterium with epithelial cells. Infection and Immunity 67, 554-561.

    Fevre, C., Passet, V., Deletoile, A., Barbe, V., Frangeul, L., Almeida, A. S., Sansonetti, P., Tournebize, R. & Brisse, S. (2011). PCR-based identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the agent of rhinoscleroma. PLoS Neglected Tropical Diseases 5, e1052.

    Filloux, A., Hachani, A. & Bleves, S. (2008). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154, 1570-1583.

    Folkesson, A., Löfdahl, S. & Normark, S. (2002). The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Research in Microbiology 153, 537.

    Foster, J. W. (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nature Reviews Microbiology 2, 898-907.

    Fung, C.-P. & Siu, L. (2007). Virulence of Klebsiella pneumoniae serotype K2 should not be underestimated in K. pneumoniae liver abscess. Clinical infectious diseases 45, 1530-1531.

    Fung, C., Chang, F., Lee, S., Hu, B., Kuo, B. I., Liu, C., Ho, M. & Siu, L. (2002). A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 50, 420-424.

    Hall, H. K. & Foster, J. W. (1996). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. Journal of Bacteriology 178, 5683-5691.

    Hong, W., Wu, Y. E., Fu, X. & Chang, Z. (2012). Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends in Microbiology.

    Huang, S.-H., Wang, C.-K., Peng, H.-L., Wu, C.-C., Chen, Y.-T., Hong, Y.-M. & Lin, C.-T. (2012). Role of the small RNA RyhB in the Fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in Klebsiella pneumoniae. BMC Microbiology 12, 148.

    Johnson, D., Russell, R., Lockatell, C., Zulty, J., Warren, J. & Mobley, H. (1993). Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infection and Immunity 61, 2748-2754.

    Lawlor, M. S., Hsu, J., Rick, P. D. & Miller, V. L. (2005). Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Molecular Microbiology 58, 1054-1073.

    Leaphart, A. B., Thompson, D. K., Huang, K. & other authors (2006). Transcriptome profiling of Shewanella oneidensis gene expression following exposure to acidic and alkaline pH. Journal of Bacteriology 188, 1633-1642.

    Lee, M. H., Pankratz, H. S., Wang, S., Scott, R. A., Finnegan, M. G., Johnson, M. K., Ippolito, J. A., Christianson, D. W. & Hausinger, R. P. (1993). Purification and characterization of Klebsiella aerogenes UreE protein: A nickel‐binding protein that functions in urease metallocenter assembly. Protein Science 2, 1042-1052.

    Maroncle, N., Balestrino, D., Rich, C. & Forestier, C. (2002). Identification of Klebsiella pneumoniae genes involved in intestinal colonization and adhesion using signature-tagged mutagenesis. Infection and Immunity 70, 4729-4734.

    Maroncle, N., Rich, C. & Forestier, C. (2006). The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Research in Microbiology 157, 184-193.

    Mates, A. K., Sayed, A. K. & Foster, J. W. (2007). Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. Journal of Bacteriology 189, 2759-2768.

    Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M. & Slonczewski, J. L. (2005). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. Journal of Bacteriology 187, 304-319.

    Mizuta, K., Ohta, M., Mori, M., Hasegawa, T., Nakashima, I. & Kato, N. (1983). Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infection and Immunity 40, 56-61.

    Moat, A. G., Foster, J. W. & Spector, M. P. (2002). Microbial stress responses. Microbial Physiology, Fourth Edition, 582-611.

    Mobley, H., Island, M. D. & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews 59, 451-480.

    Pan, Y.-J., Fang, H.-C., Yang, H.-C., Lin, T.-L., Hsieh, P.-F., Tsai, F.-C., Keynan, Y. & Wang, J.-T. (2008). Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. Journal of Clinical Microbiology 46, 2231-2240.

    Park, I.-S., Carr, M. B. & Hausinger, R. P. (1994). In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proceedings of the National Academy of Sciences U.S.A 91, 3233-3237.

    Pizarro-Cerda, J. & Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell 124, 715-727.

    Podschun, R. & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews 11, 589-603.

    Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F. & Mekalanos, J. J. (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proceedings of the National Academy of Sciences of the United States of America 103, 1528-1533.

    Ryan, K. & Ray, C. (2004). Sherris Medical Microbiology, 4 th edn., 2004: Mc Graw Hill, USA.

    Sarris, P. F., Zoumadakis, C., Panopoulos, N. J. &
    Scoulica, E. V. (2011). Distribution of the putative type VI secretion system core genes in Klebsiella spp. Infection, Genetics and Evolution 11, 157-166.

    Scott, D. R., Weeks, D., Hong, C., Postius, S., Melchers, K. & Sachs, G. (1998). The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology 114, 58-70.

    Simoons-Smit, A., Verweij-van Vught, A. & MacLaren, D. (1986). The role of K antigens as virulence factors in Klebsiella. Journal of Medical Microbiology 21, 133-137.

    Siu, L. K., Yeh, K.-M., Lin, J.-C., Fung, C.-P. & Chang, F.-Y. (2012). Klebsiella pneumoniae liver abscess: a new invasive syndrome. The Lancet Infectious Diseases 12, 881-887.

    Skorupski, K. & Taylor, R. K. (1996). Positive selection vectors for allelic exchange. Gene 169, 47-52.

    Stothard, P. & Wishart, D. S. (2005). Circular genome visualization and exploration using CGView. Bioinformatics 21, 537-539.

    Tsai, F.-C., Huang, Y.-T., Chang, L.-Y. & Wang, J.-T. (2008). Pyogenic liver abscess as endemic disease, Taiwan. Emerging Infectious Diseases 14, 1592.

    Turton, J. F., Baklan, H., Siu, L., Kaufmann, M. E. & Pitt, T. L. (2008). Evaluation of a multiplex PCR for detection of serotypes K1, K2 and K5 in Klebsiella sp. and comparison of isolates within these serotypes. FEMS Microbiology Letters 284, 247-252.

    Watt, R. & Ludden, P. (1999). Nickel-binding proteins. Cellular and Molecular Life Sciences CMLS 56, 604-625.

    Whitfield, C. & Roberts, I. S. (1999). Structure, assembly and regulation of expression of capsules in Escherichia coli. Molecular Microbiology 31, 1307-1319.

    Wu, C.-C., Huang, Y.-J., Fung, C.-P. & Peng, H.-L. (2010). Regulation of the Klebsiella pneumoniae Kpc fimbriae by the site-specific recombinase KpcI. Microbiology 156, 1983-1992.

    Wu, K.-M., Li, L.-H., Yan, J.-J. & other authors (2009). Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. Journal of Bacteriology 191,4492-4501.

    Yeh, K.-M., Kurup, A., Siu, L., Koh, Y., Fung, C.-P., Lin, J.-C., Chen, T.-L., Chang, F.-Y. & Koh, T.-H. (2007). Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan. Journal of Clinical Microbiolom gy 45, 466-471.

    Yu, W.-L., Ko, W.-C., Cheng, K.-C., Lee, H.-C., Ke, D.-S., Lee, C.-C., Fung, C.-P. & Chuang, Y.-C. (2006). Association between rmpA and magA genes and clinical syndromes caused by Klebsiella pneumoniae in Taiwan. Clinical Infectious Diseases 42, 1351-1358.

    Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85.

    Yuan, Z.-C., Liu, P., Saenkham, P., Kerr, K. & Nester, E. W. (2008). Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. Journal of Bacteriology 190, 494-507.

    吳嘉怡 (2008). Fur蛋白質在克雷白氏肺炎桿菌CG43中的功能探討. In 生物科技系所. 新竹市: 國立交通大學.

    林志桓 (2009). RcsB 蛋白質在克雷白氏肺炎桿菌 CG43 中抗酸能力所扮演的角色. 交通大學分子醫學與生物工程研究所學位論文.

    曾品瑄 (2011). HdeB, HdeB1, HdeD 蛋白質參與克雷白氏肺炎桿菌 CG43 抗酸反應的探討. 交通大學生物科技學系學位論文.

    黃登魁 (2007). 克雷白氏肺炎桿菌NTUH-K2044中纖毛的功能性分析. In 生物科技系所. 新竹市: 國立交通大學.

    樊力成 (2012). YfdX在克雷白氏肺炎桿菌CG43抗酸反應中所扮演的角色. In 生物科技學系. 新竹市: 國立交通大學.

    蔡秉熹 (2008). 克雷白氏肺炎桿菌CG43中yfiD基因表現的調控. In 生物科技系所. 新竹市: 國立交通大學.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE