研究生: |
吳勇毅 |
---|---|
論文名稱: |
探討三甲基幾丁聚醣(Trimethyl Chitosan) 與聚麩胺酸(γ-poly-glutamic-acid) 製備離子鍵結型奈米微粒於小腸環境下的穩定性分析 |
指導教授: | 宋信文 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 三甲基幾丁聚醣 、聚麩胺酸 、離子鍵結型奈米微粒 、口服藥物 |
外文關鍵詞: | Trimethyl Chitosan, γ-poly-glutamic-acid, Caco-2 cell |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小腸上皮細胞(epithelial cell)主要是由細胞內的酵素與連接細胞之間的蛋白質錯合物構成。而由於細胞膜主要是由脂雙層所構成,因此親脂性分子可以直接藉由細胞膜(transcellular pathway)通過上皮細胞;反之,親水性分子無法直接穿過疏水性的細胞膜,需要經由細胞與細胞之間的空隙(paracellular pathway)通過上皮細胞。位於上皮細胞之間的蛋白質錯合物tight junction可以選擇性地讓一些親水性分子進出上皮細胞。許多具有相當療效的口服親水性藥物如蛋白質藥物和胜肽類藥物等,除了會遭受到胃酸的破壞外,同時也無法順利通過小腸上皮細胞膜的疏水性脂雙層結構,進而影響腸道的藥物吸收。
在本實驗室先前的研究成果中,已成功利用幾丁聚醣與聚麩氨酸,製備奈米微粒載體以包覆胰島素,作為口服藥物釋放系統,由於此奈米微粒其pH值的穩定範圍為pH 2.5 ~ pH 6.6。因此本研究目的主希望藉由三甲基幾丁聚醣Trimethyl Chitosan(簡稱TMC),增加奈米微粒於pH值的穩定範圍程度,進而提高口服藥物奈米微粒載體的生體可用率。
本研究主要分為三部分。第一部分為合成不同接枝度TMC,並分別利用高磁場核磁共振儀(NMR)鑑定TMC的接枝度。第二部份為選擇不同接枝度TMC與γ-PGA製備奈米微粒,觀察奈米微粒在不同pH值下之粒徑變化和電荷性差異,以探討TMC和γ-PGA的奈米微粒在不同pH值下穩定性分析,選擇最佳的接枝度條件以進行後續藥物包覆。
第三部分則是以Caco-2 cell monolayers作為體外實驗的model,發現TMC/γ-PGA的奈米微粒具有打開Caco-2 cell monolayers細胞間tight junction的能力。藉由量測細胞下層medium發現胰島素的確可經過parecellular pathway而通過Caco-2 cell monolayers,並進一步利用(CLSM)共軛焦雷射掃描顯微鏡證明與胰島素的確可進入細胞內。最後模擬口服途徑的pH值變化進行藥物釋放,進一步證明TMC/ γ-PGA所製備的奈米微粒的確可解決Chitosan/γ-PGA在中性環境下藥物過度釋放的問題。
參考文獻
1. 姚富洲, “生命科學,” 合記出版公司,台北, 2002.
2. 卓貴美, “圖解生理學,” 五南圖書出版公司,台北, 339-362 ,2000.
3. 朱家瑜, “人體組織學,” 藝軒出版公司, 台北, ,2000.
4. Ward, P.D., Tippin, T.K., Thakker, D.R., “Enhancing paracellular permeability by modulating epithelial tight junctions,” Pharmaceutical Science & Technology Today, 3, 346-358, 2000.
5. Diamond, J.M., “The epithelial junction: bridge, gate, and fence,” Physiologist, 20, 10-8, 1977.
6. Ballard, S.T., Hunter, J.H., Taylor, A.E., “Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium,” Annu. rev. nutr, 15, 35-55, 1995.
7. Hidalgo, I.J., Raub, T.J., Borchardt, R.T., “Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability,” Gastroenterology, 96, 736-49, 1989.
8. Wilson, G., “Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier,” J. control. release., 11, 25-40, 1990.
9. Delie, F. and Rubas, W., “A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model,” Crit. rev. ther. drug carr. syst., 14, 221-286, 1997.
10. Liu, D.Z., LeCluyse, E.L., Thakker, D.R., “Dodecylphosphocholine- mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers,” J. pharm. sci, 88, 1161-1168, 1999.
11. Liu, D.Z., Morris-Natschke, S.L., Kucera, L.S., Ishaq, K.S., Thakker, D.R., “Structure-activity relationships for enhancement of paracellular permeability by 2-alkoxy-3-alkylamidopropyl- phosphocholines across Caco-2 cell monolayers”, J. pharm. sci, 88, 1169-1174, 1999.
12. Artursson, P., Palm, K., Luthman, K., “Caco-2 monolayers in experimental and theoretical predictions of drug transport,” Adv. drug deliv. rev., 46, 27-43, 2001.
13. 李昂, “奈米顆粒在藥物輸遞的應用,” 化工資訊, 10, 44-55, 2001.
14. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., “Biodegradable polymeric nanoparticles as drug delivery devices,” J. control. release., 70, 1-20, 2001.
15. Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., Yang, C., “Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles,” Biomaterials, 23, 3193-3201, 2002.
16. Hans, M.L. and Lowman, A.M., “Biodegradable nanoparticles for drug delivery and targeting,” Current Opinion in Solid and Materials Science, 6, 319-327, 2002.
17. Pan, Y,. Li, Y.J., Zhao, H.Y., Zheng, J.M., Xu, H., Wei, G., Hao J.S. Cui, F.D., “Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo,” Int. j. pharm., 249, 139-147, 2002.
18. Hirano, S. and Matsumura, T., “N-acyl derivatives of chitosan and their hydrolysis by chitonase,” Carbohydr. res, 165, 120-122, 1987.
19. A.B. Sieval, M. Thanoual, A.F. Kotzkb, J.C. Verhoefa, J. BrusseeC, H.E. Junginger, “Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride,” Carbohydrate Polymers, 36, 157-165, 1998.
20. S Hermeling, W Jiskoot, DJA Crommelin and S Schellekens , “Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system”, J of Contr. Rel., 111, 107-116., 2006.
21. Phamle D,Michel M,Marguerite R,Jacques D. ”Water soluble derivatives obtained by controlled chemical modifications of chitosan”, Carbohydrate Polymers, 24, 209-214, 1994.
22. Muzzarelli, R.A.A., “Chitin and its derivatives: New trends of applied and research,” Carbohydr. res, 3, 52-57, 1993.
23. Ralston, G.B., Tracey, M.V., Wrench, P.V., “The inhibition of fermentation in baker’s yeast by chitin,” Biochimca et Biophysica Acta, 93, 652-665, 1964.
24. Nishimura, S., Ikeuchi, Y., Tokura, S., “The adsorption of bovine blood proteins onto the surface of O-carboxymethyl chitin,” Carbohydr. res, 134, 305-312, 1984.
25. Inoue, K., Baba, Y., Yoshizuka, K., “Selectivity series in the adsorption of mental ions on a resin prepared by crosslinking copper(Ⅱ)-complexed chitosan,” Chem. lett., 1281-1284, 1988.
26. Chandy, T. and Sharma, C.P., “Prostaglandin E1-immobilized poly(vmyl alcohol)-blended chitosan membranes: blood compatibility and permeability properties,” Journal of Application Polymer Science, 44, 2145-2156, 1992.
27. Kifime, K., Yamaguchi, Y., Kishimoto, S., “Wound healing effect of chitin surgical dressing,” Trans. Soc. Biomat., XI, 216-220, 1988.
28. Pelletir, A., Lemire, L., Sygnsch, J., “Chitin / chitosan transformation by thermo- chemical treatment,” Biotechnol. bioeng., 36, 310-315, 1990.
29. Peluso, G., Petille, O., Ranieri, M., Samtin, M., Ambrosio, L., Calabro, D., Avallone, B., Balsamo, G., “Chitosan-mediated stimulation of macrophage function,” Biomaterials, 15, 1215-1220, 1994.
30. Sakaguchi, T., Horikoshi, T., Nakajima, A., “Adsorption of uraniumby chitin phosphate and chitosan phosphate,” Agric. biol. chem., 45, 2191-2195, 1981.
31. Peniston, Q.P. and Johnson, E.L., “Process for depolymerization of chitosan,” U.S. Patent, No. 3922260, 1-5, 1975.
32. MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill I., Hinchcliffe, M., Rolland, A.P., “Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid deliver,” J. control. release., 56, 259-272, 1998.
33. Gross, A., Bacterial γ-poly(glutamic acid). In: Kaplan, D.L. (Ed.) Biopolymers from Renewable Resources, Springer-Verlag, New York, 195-219, 1998.
34. Richard, A. and Margaritis, A., “Poly(glutamic acid) for biomedical applications,” Critical Reviews in Biotechnology, 21, 219-32, 2001.
35. Yoon, S.H., Do, J.H., Lee, S.Y., Chang, H.N., “Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis,” Biotechnol. lett., 22, 585-588, 2000.
36. Thorne, C.B., Housewright, R.D., Leonard, C.G., “Production of glutamyl polypeptide by Bacillus Subtilis,” U.S. Patent, NO. 2895882, 1-4, 1959.
37. Goto, A. and Kunioka, M., “Biosynthesis and Hydrolysis of Poly(γ-glutamic acid) from Bacillus subtilis IFO3335,” Bioscience Biotechnology Biochemistry, 56, 1031-1035, 1992.
38. Kotze, A.F., Luessen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E., “Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments,” European Journal of Pharmaceutical Sciences, 7, 145-151, 1999.
39. Thanou, M., Verhoef, J.C., Junginger, H.E., “Chitosan and its derivatives as intestinal absorption enhancers,” Adv. drug deliv. rev., 50, Suppl 1, S91-101, 2001.
40. Kotze, A.F., Thanou, M.M., Luebetaen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E., “Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2),” J. pharm. sci., 88, 253-257, 1999.
41. Thanou, M., Verhoef, J.C., Junginger, H.E., “Oral drug absorption enhancement by chitosan and its derivatives,” Adv. drug deliv. rev., 52, 117-126, 2001.
42. Kotze, A.F., Thanou, M.M., Luessen, H.L., de Boer, B.G., Verhoef, J.C., Junginger, H.E., “Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2),” European Journal of Pharmaceutics & Biopharmaceutics, 47, 269-274, 1999.
43. Kotze, A.F., Luessen, H.L., de Leeuw, B.J., de Boer, B.G., Verhoef, J.C., Junginger, H.E., “N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2),” Pharm. res., 14, 1197-1202, 1997.
44. Lin, Y.-H., Chung, C.-K., Chen, C.-T., Liang, H.-F, Chen, S.-C., Sung, H.-W., “Preparation of Nanoparticles Composed of Chitosan /Poly-γ-Glutamic Acid and Evaluation of their Permeability through Caco-2 Cells,” Biomacromolecules, vol.6, pp.1104-1112, 2005.
45. 陳家全, “生物電子顯微鏡學,” 行政院國家科學委員會精密儀器發展中心”, 新竹, 1997.
46. Yamashita, S., Konishi, K., Yamazaki, Y., Taki, Y., Sakane, T., Sezaki, H., Furuyama, Y., “New and better protocols for a short-term Caco-2 cell culture system,” J. pharm. sci., 91, 669-679, 2002.
47. Borchard, G., Lueßen, H.L., de Boer, Albertus, G., Verhoef, J., C., Lehr, C.M., “The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro,” J. control. release., 39, 131-138, 1996.
48. Zengshuan, M. and Lim, L.Y., “Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles,” Pharm. res., 20, 1812-1819, 2003.
49. A Polnok, G Borchard, JC Verhoef, N Sarisuta, HE Junginger, “ Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride,” Eur. J. Pharm. Biopharm., 57, 77-83, 2003.
50. Lin YH, Chen CT, Liang HF, Kulkarni Anandrao R, Lee PW, Chen CH, Sung HW., “Novel nanoparticles for oral insulin delivery via the paracellular pathway,” Nanotechnology, vol.18, pp.1-11, 2007.
51. Lin YH., Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW., “Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery,” Biomacromolecules, vol.8, pp.146-152, 2007.