簡易檢索 / 詳目顯示

研究生: 吳勇毅
論文名稱: 探討三甲基幾丁聚醣(Trimethyl Chitosan) 與聚麩胺酸(γ-poly-glutamic-acid) 製備離子鍵結型奈米微粒於小腸環境下的穩定性分析
指導教授: 宋信文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 44
中文關鍵詞: 三甲基幾丁聚醣聚麩胺酸離子鍵結型奈米微粒口服藥物
外文關鍵詞: Trimethyl Chitosan, γ-poly-glutamic-acid, Caco-2 cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小腸上皮細胞(epithelial cell)主要是由細胞內的酵素與連接細胞之間的蛋白質錯合物構成。而由於細胞膜主要是由脂雙層所構成,因此親脂性分子可以直接藉由細胞膜(transcellular pathway)通過上皮細胞;反之,親水性分子無法直接穿過疏水性的細胞膜,需要經由細胞與細胞之間的空隙(paracellular pathway)通過上皮細胞。位於上皮細胞之間的蛋白質錯合物tight junction可以選擇性地讓一些親水性分子進出上皮細胞。許多具有相當療效的口服親水性藥物如蛋白質藥物和胜肽類藥物等,除了會遭受到胃酸的破壞外,同時也無法順利通過小腸上皮細胞膜的疏水性脂雙層結構,進而影響腸道的藥物吸收。
    在本實驗室先前的研究成果中,已成功利用幾丁聚醣與聚麩氨酸,製備奈米微粒載體以包覆胰島素,作為口服藥物釋放系統,由於此奈米微粒其pH值的穩定範圍為pH 2.5 ~ pH 6.6。因此本研究目的主希望藉由三甲基幾丁聚醣Trimethyl Chitosan(簡稱TMC),增加奈米微粒於pH值的穩定範圍程度,進而提高口服藥物奈米微粒載體的生體可用率。
    本研究主要分為三部分。第一部分為合成不同接枝度TMC,並分別利用高磁場核磁共振儀(NMR)鑑定TMC的接枝度。第二部份為選擇不同接枝度TMC與γ-PGA製備奈米微粒,觀察奈米微粒在不同pH值下之粒徑變化和電荷性差異,以探討TMC和γ-PGA的奈米微粒在不同pH值下穩定性分析,選擇最佳的接枝度條件以進行後續藥物包覆。
    第三部分則是以Caco-2 cell monolayers作為體外實驗的model,發現TMC/γ-PGA的奈米微粒具有打開Caco-2 cell monolayers細胞間tight junction的能力。藉由量測細胞下層medium發現胰島素的確可經過parecellular pathway而通過Caco-2 cell monolayers,並進一步利用(CLSM)共軛焦雷射掃描顯微鏡證明與胰島素的確可進入細胞內。最後模擬口服途徑的pH值變化進行藥物釋放,進一步證明TMC/ γ-PGA所製備的奈米微粒的確可解決Chitosan/γ-PGA在中性環境下藥物過度釋放的問題。


    目 錄 內容 頁數 摘要 I 目錄 III 第一章 緒論 1.1 腸胃道 1 1.2 親水性分子在消化道的吸收途徑 2 1.3 Caco-2 cell monolayers 4 1.4 奈米微粒 4 1.5 離子鍵結型奈米微粒 5 1.6 幾丁質與幾丁聚醣 6 1.7 三甲基幾丁聚醣Trimethyl Chitosan (TMC) 7 1.8 聚麩胺酸-------------------------------------------------------------------8 1.9 研究動機與目的 --------------------------------------------------------- 9 第二章 Trimethyl Chitosan 的合成 2.1 研究目的 11 2.2 Trimethyl Chitosan (TMC) 的製備 11 2.2.1幾丁聚醣 11 2.2.2 Trimethyl Chitosan Chloride (TMC) 的製備 11 2.3 Trimethyl Chitosan (TMC) 接枝度的鑑定 13 2.4 實驗結果與討論 14 2.4.1 1H-NMR結果討論 14 2.4.2傅立葉轉換紅外線光譜分析(FT-IR) 15 2.5 結論 16 第三章 離子鍵結型奈米微粒的穩定性分析 3.1 研究目的 17 3.2 離子鍵結型奈米微粒的製備 17 3.3 奈米微粒粒徑與表面電荷分析 18 3.4 穿透式電子顯微鏡 (TEM) 18 3.5 奈米微粒在不同pH值環境穩定性分析 19 3.5.1 不同pH值溶液的配製-----------------------------------------19 3.5.2 穩定性分析方法-------------------------------------------------19 3.6 實驗結果與討論 19 3.7 奈米微粒的藥物包覆 -23 3.7.1 包覆藥物奈米微粒的製備-------------------------------------23 3.7.2 奈米微粒藥物Loading Efficiency (L.E.) & Loading Content (L.C.)的計算---------------------------------------------------24 3.7.3 X-ray Spectrometry----------------------------------------------25 3.7.4 包覆胰島素奈米微粒的穩定性探討-------------------------26 3.7.5 穿透式電子顯微鏡(TEM)結果--------------------------------26 3.7.6 體外藥物釋放結果----------------------------------------------27 第四章 離子鍵結型奈米微粒對小腸上皮細胞滲透能力之探討 4.1 研究目的 30 4.2 Caco-2 cell monolayers的培養 30 4.3 Transepithelial electrical resistance (TEER ) 31 4.4 Confocal laser scanning microscopy (CLSM) --33 4.5 實驗數據與討論 33 4.5.1 Transepithelial electrical resistance (TEER )實驗結果 33 4.5.2 藥物穿透能力的實驗結果 34 4.5.3 CLSM實驗結果------------------------------------------------36 4.6 結論 38 參考文獻------------------------------------------------------------------------39 圖索引 圖1-1、小腸上皮組織中絨毛構造 2 圖1-2、一般分子穿越小腸上皮細胞的途徑 3 圖1-3、(a)幾丁質;(b)幾丁聚醣的化學結構式 7 圖1-4、TMC的結構式 7 圖1-5、聚麩胺酸的化學結構式 8 圖1-6、論文架構規劃 10 圖2-1、TMC的合成流程圖 12 圖2-2、TMC合成化學反應式 12 圖2-3、TMC25, TMC40, TMC55的 H1-NMR圖譜分析 14 圖2-4、TMC & CS的FTIR圖譜分析 15 圖2-5、結論 15 圖3-1、離子鍵結型奈米微粒的製備流程 16 圖3-2、TEM正染流程 17 圖3-3、幾丁聚醣CS和TMC25的化學結構式 20 圖3-4、奈米微粒在小腸上皮細胞的藥物釋放機制 21 圖3-5、包覆胰島素的離子鍵結型奈米微粒製備流程 22 圖3-6、胰島素、胰島素與聚麩胺酸、胰島素與聚麩胺酸和硫酸鎂的X-ray分析 24 圖3-7、穿透式電子顯微鏡(TEM)觀測奈米微粒的表面型態 26 圖3-8、藥物釋放實驗示意圖 27 圖3-9、藥物釋放實驗結果 27 圖4-1、Transwell cell culture chambers 30 圖4-2、Millcell-ERS 31 圖4-3、測量TEER的方法 31 圖4-4、TMC40/γ-PGA NPs 對Caco-2 cell TEER電阻值的影響 32 圖4-5、Insulin對Caco-2 cell的滲透性 34 圖4-6、Caco-2 cell ZO-1免疫染色 35 圖4-7、Cy3-labeled insulin 在Caco-2 cell的螢光表現 36 表索引 表3-1、CS, TMC25, TMC40, TMC55/ γ-PGA 奈米微粒在不同pH值的粒徑與電荷分析 20 表3-2、TMC奈米微粒胰島素包覆比較 23 表3-3、TMC奈米微粒包覆胰島素的粒徑與電荷分析 25

    參考文獻

    1. 姚富洲, “生命科學,” 合記出版公司,台北, 2002.
    2. 卓貴美, “圖解生理學,” 五南圖書出版公司,台北, 339-362 ,2000.
    3. 朱家瑜, “人體組織學,” 藝軒出版公司, 台北, ,2000.
    4. Ward, P.D., Tippin, T.K., Thakker, D.R., “Enhancing paracellular permeability by modulating epithelial tight junctions,” Pharmaceutical Science & Technology Today, 3, 346-358, 2000.
    5. Diamond, J.M., “The epithelial junction: bridge, gate, and fence,” Physiologist, 20, 10-8, 1977.
    6. Ballard, S.T., Hunter, J.H., Taylor, A.E., “Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium,” Annu. rev. nutr, 15, 35-55, 1995.
    7. Hidalgo, I.J., Raub, T.J., Borchardt, R.T., “Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability,” Gastroenterology, 96, 736-49, 1989.
    8. Wilson, G., “Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier,” J. control. release., 11, 25-40, 1990.
    9. Delie, F. and Rubas, W., “A human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model,” Crit. rev. ther. drug carr. syst., 14, 221-286, 1997.
    10. Liu, D.Z., LeCluyse, E.L., Thakker, D.R., “Dodecylphosphocholine- mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers,” J. pharm. sci, 88, 1161-1168, 1999.

    11. Liu, D.Z., Morris-Natschke, S.L., Kucera, L.S., Ishaq, K.S., Thakker, D.R., “Structure-activity relationships for enhancement of paracellular permeability by 2-alkoxy-3-alkylamidopropyl- phosphocholines across Caco-2 cell monolayers”, J. pharm. sci, 88, 1169-1174, 1999.
    12. Artursson, P., Palm, K., Luthman, K., “Caco-2 monolayers in experimental and theoretical predictions of drug transport,” Adv. drug deliv. rev., 46, 27-43, 2001.
    13. 李昂, “奈米顆粒在藥物輸遞的應用,” 化工資訊, 10, 44-55, 2001.
    14. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., “Biodegradable polymeric nanoparticles as drug delivery devices,” J. control. release., 70, 1-20, 2001.
    15. Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., Yang, C., “Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles,” Biomaterials, 23, 3193-3201, 2002.
    16. Hans, M.L. and Lowman, A.M., “Biodegradable nanoparticles for drug delivery and targeting,” Current Opinion in Solid and Materials Science, 6, 319-327, 2002.
    17. Pan, Y,. Li, Y.J., Zhao, H.Y., Zheng, J.M., Xu, H., Wei, G., Hao J.S. Cui, F.D., “Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo,” Int. j. pharm., 249, 139-147, 2002.
    18. Hirano, S. and Matsumura, T., “N-acyl derivatives of chitosan and their hydrolysis by chitonase,” Carbohydr. res, 165, 120-122, 1987.
    19. A.B. Sieval, M. Thanoual, A.F. Kotzkb, J.C. Verhoefa, J. BrusseeC, H.E. Junginger, “Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride,” Carbohydrate Polymers, 36, 157-165, 1998.
    20. S Hermeling, W Jiskoot, DJA Crommelin and S Schellekens , “Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system”, J of Contr. Rel., 111, 107-116., 2006.
    21. Phamle D,Michel M,Marguerite R,Jacques D. ”Water soluble derivatives obtained by controlled chemical modifications of chitosan”, Carbohydrate Polymers, 24, 209-214, 1994.
    22. Muzzarelli, R.A.A., “Chitin and its derivatives: New trends of applied and research,” Carbohydr. res, 3, 52-57, 1993.
    23. Ralston, G.B., Tracey, M.V., Wrench, P.V., “The inhibition of fermentation in baker’s yeast by chitin,” Biochimca et Biophysica Acta, 93, 652-665, 1964.
    24. Nishimura, S., Ikeuchi, Y., Tokura, S., “The adsorption of bovine blood proteins onto the surface of O-carboxymethyl chitin,” Carbohydr. res, 134, 305-312, 1984.
    25. Inoue, K., Baba, Y., Yoshizuka, K., “Selectivity series in the adsorption of mental ions on a resin prepared by crosslinking copper(Ⅱ)-complexed chitosan,” Chem. lett., 1281-1284, 1988.
    26. Chandy, T. and Sharma, C.P., “Prostaglandin E1-immobilized poly(vmyl alcohol)-blended chitosan membranes: blood compatibility and permeability properties,” Journal of Application Polymer Science, 44, 2145-2156, 1992.
    27. Kifime, K., Yamaguchi, Y., Kishimoto, S., “Wound healing effect of chitin surgical dressing,” Trans. Soc. Biomat., XI, 216-220, 1988.
    28. Pelletir, A., Lemire, L., Sygnsch, J., “Chitin / chitosan transformation by thermo- chemical treatment,” Biotechnol. bioeng., 36, 310-315, 1990.

    29. Peluso, G., Petille, O., Ranieri, M., Samtin, M., Ambrosio, L., Calabro, D., Avallone, B., Balsamo, G., “Chitosan-mediated stimulation of macrophage function,” Biomaterials, 15, 1215-1220, 1994.
    30. Sakaguchi, T., Horikoshi, T., Nakajima, A., “Adsorption of uraniumby chitin phosphate and chitosan phosphate,” Agric. biol. chem., 45, 2191-2195, 1981.
    31. Peniston, Q.P. and Johnson, E.L., “Process for depolymerization of chitosan,” U.S. Patent, No. 3922260, 1-5, 1975.
    32. MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill I., Hinchcliffe, M., Rolland, A.P., “Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid deliver,” J. control. release., 56, 259-272, 1998.
    33. Gross, A., Bacterial γ-poly(glutamic acid). In: Kaplan, D.L. (Ed.) Biopolymers from Renewable Resources, Springer-Verlag, New York, 195-219, 1998.
    34. Richard, A. and Margaritis, A., “Poly(glutamic acid) for biomedical applications,” Critical Reviews in Biotechnology, 21, 219-32, 2001.
    35. Yoon, S.H., Do, J.H., Lee, S.Y., Chang, H.N., “Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis,” Biotechnol. lett., 22, 585-588, 2000.
    36. Thorne, C.B., Housewright, R.D., Leonard, C.G., “Production of glutamyl polypeptide by Bacillus Subtilis,” U.S. Patent, NO. 2895882, 1-4, 1959.
    37. Goto, A. and Kunioka, M., “Biosynthesis and Hydrolysis of Poly(γ-glutamic acid) from Bacillus subtilis IFO3335,” Bioscience Biotechnology Biochemistry, 56, 1031-1035, 1992.

    38. Kotze, A.F., Luessen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E., “Chitosan for enhanced intestinal permeability: prospects for derivatives soluble in neutral and basic environments,” European Journal of Pharmaceutical Sciences, 7, 145-151, 1999.
    39. Thanou, M., Verhoef, J.C., Junginger, H.E., “Chitosan and its derivatives as intestinal absorption enhancers,” Adv. drug deliv. rev., 50, Suppl 1, S91-101, 2001.
    40. Kotze, A.F., Thanou, M.M., Luebetaen, H.L., de Boer, A.G., Verhoef, J.C., Junginger, H.E., “Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (Caco-2),” J. pharm. sci., 88, 253-257, 1999.
    41. Thanou, M., Verhoef, J.C., Junginger, H.E., “Oral drug absorption enhancement by chitosan and its derivatives,” Adv. drug deliv. rev., 52, 117-126, 2001.
    42. Kotze, A.F., Thanou, M.M., Luessen, H.L., de Boer, B.G., Verhoef, J.C., Junginger, H.E., “Effect of the degree of quaternization of N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2),” European Journal of Pharmaceutics & Biopharmaceutics, 47, 269-274, 1999.
    43. Kotze, A.F., Luessen, H.L., de Leeuw, B.J., de Boer, B.G., Verhoef, J.C., Junginger, H.E., “N-trimethyl chitosan chloride as a potential absorption enhancer across mucosal surfaces: in vitro evaluation in intestinal epithelial cells (Caco-2),” Pharm. res., 14, 1197-1202, 1997.
    44. Lin, Y.-H., Chung, C.-K., Chen, C.-T., Liang, H.-F, Chen, S.-C., Sung, H.-W., “Preparation of Nanoparticles Composed of Chitosan /Poly-γ-Glutamic Acid and Evaluation of their Permeability through Caco-2 Cells,” Biomacromolecules, vol.6, pp.1104-1112, 2005.
    45. 陳家全, “生物電子顯微鏡學,” 行政院國家科學委員會精密儀器發展中心”, 新竹, 1997.
    46. Yamashita, S., Konishi, K., Yamazaki, Y., Taki, Y., Sakane, T., Sezaki, H., Furuyama, Y., “New and better protocols for a short-term Caco-2 cell culture system,” J. pharm. sci., 91, 669-679, 2002.
    47. Borchard, G., Lueßen, H.L., de Boer, Albertus, G., Verhoef, J., C., Lehr, C.M., “The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro,” J. control. release., 39, 131-138, 1996.
    48. Zengshuan, M. and Lim, L.Y., “Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles,” Pharm. res., 20, 1812-1819, 2003.
    49. A Polnok, G Borchard, JC Verhoef, N Sarisuta, HE Junginger, “ Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride,” Eur. J. Pharm. Biopharm., 57, 77-83, 2003.
    50. Lin YH, Chen CT, Liang HF, Kulkarni Anandrao R, Lee PW, Chen CH, Sung HW., “Novel nanoparticles for oral insulin delivery via the paracellular pathway,” Nanotechnology, vol.18, pp.1-11, 2007.
    51. Lin YH., Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW., “Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery,” Biomacromolecules, vol.8, pp.146-152, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE