簡易檢索 / 詳目顯示

研究生: 毛威智
Mao, Wei Jhih
論文名稱: 具繞折式彈簧結構之CMOS-MEMS電容式麥克風的設計與實現
Design and Implementation of CMOS-MEMS Capacitive Microphone with Serpentine Spring Structure
指導教授: 方維倫
Fang, Weileun
口試委員: 吳名清
Wu, Ming Ching
李昇憲
Li, Sheng Shian
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: CMOS-MEMS電容式麥克風繞折式彈簧陣列式麥克風
外文關鍵詞: CMOS-MEMS, capacitive microphone, serpentine spring, microphone array
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出兩種具有繞折式彈簧之CMOS-MEMS電容式麥克風,利用繞折式彈簧設計使麥克風振膜之剛性得以降低,且使其運動更為接近理想的平行板接近感測模式,再搭配上較厚的結構層以及材料堆疊的選擇與配置來抑制殘餘應力所產生的翹曲,此外本研究亦引入陣列式麥克風設計進一步提升元件的感測性能。微麥克風的設計從其相關的理論分析著手,並利用電腦輔助軟體對元件之各項性能進行模擬設計。製造上採用TSMC T18 1P6M製程平台搭配實驗室後製程的方式完成元件。最後將對麥克風元件的機械薄膜與聲學特性進行量測、分析與討論。根據實驗量測之結果,此結構設計方式能成功地將麥克風實現於CMOS平台上,使用陣列式麥克風能大幅度的提升整體元件的感測靈敏度以及訊噪比,此外特殊的振膜結構配置對於單一麥克風元件之感測性能亦有一定程度的提升。


    This study presents two different CMOS-MEMS microphone designs with serpentine spring structure. The serpentine spring structure not only can decrease the stiffness of diaphragm but also can change the diaphragm motion into piston-type movement to improve the microphone sensitivity. On the other hands, by using thick structure and material arrangement can help to resist the bending which caused by residual stress effect. Array type microphone design which can enhance device sensitivity also has be included in this work. In microphone design, computer-assisted software had been use to simulate the properties of micro-structure. The microphone had been implement by using TSMC 0.18μm 1P6M fabrication process, and in-house post-CMOS process. Finally the measured microphone mechanical and acoustic properties would be given. According to the measurement results, two of microphone design had been implement successfully. Array type microphone could effectively enhance device performance. In addition, special diaphragm design could also improve the sensitivity in single type microphone.

    摘要 I Abstract II 目錄 III 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 文獻回顧 4 1-4 研究目標 12 第二章 元件設計與理論分析 21 2-1 麥克風感測原理與結構設計 21 2-2 機械特性分析與有限元素法模擬 23 2-3 聲學特性分析與總集元素法模擬 25 2-4 微麥克風讀取電路架構 27 第三章 具雙邊夾持繞折式彈簧之麥克風 38 3-1 結構設計與分析 38 3-2 元件後製程與結果 40 3-3 量測結果與討論 45 3-4 小結 49 第四章 以振膜邊緣電極進行感測之麥克風 68 4-1 結構設計與分析 68 4-2 元件後製程與結果 70 4-3 量測結果與討論 73 4-4 小結 75 第五章 結論與未來工作 88 5-1 結論 88 5-2 未來工作 89 參考文獻 92 附錄A 麥克風感測電路 96 A-1 感測電路架構與模擬 96 A-2 感測電路量測與整合測試 97 附錄B 麥克風溫度穩定性分析與量測 103 B-1 結構溫度穩定性模擬 103 B-2 結構溫度穩定性量測 104

    [1]R. P. Feynman, “There's Plenty of Room at the Bottom”, Journal of Microelectromechanical Systems, vol. 1, no.1, pp.60-66, 1992
    [2]http://www.oezratty.net/wordpress/2013/ceatec-2013-composants/
    [3]http://wechat.fingerdaily.com/thread-20876-1-1.html
    [4]http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&cat=25&id=0000369429_58P5NGYW19BLMELBPDC5H&ct=2
    [5]Steady Growth for MEMS in 2013 and Beyond, Yole Development 2013
    [6]P.R. Scheeper, A.G.H. van der Donk, W. Olthuis and P. Bergveld, “A review of silicon microphones”, Sensors and Actuators A: Physical, vol. 44, issue 1, pp. 1 – 11, 1994
    [7]M.D. Williams, B. A. Griffin, T. N. Reagan, J. R. Underbrink and M. Sheplak, “An AlN MEMS Piezoelectric Microphone for Aeroacoustic Applications”, Journal of Microelectromechanical Systems, vol. 21, no. 2, 2012
    [8]M. Royer, J.O. Holmen, M.A. Wurm, O.S. Aadl and M. Glenn, “ZnO on Si integrated acoustic sensor”, Sensors and Actuators, vol. 4, pp. 357–362, 1983
    [9]R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges”, Sensors and Actuators A: Physical, vol. 32, issues 1–3, pp. 555-559, 1992
    [10]P. V. Loeppert and S. B. Lee, “The First Commercialized MEMS Microphone”, Solid-State Sensors Actuators and Microsystems Workshop, 2006
    [11]J. W. Weigold, T. J. Brosnihan, J. Bergeron and X. Zhang, “A MEMS Condenser Microphone For Consumer Applications”, IEEE MEMS Conference, 2006
    [12]C. Leinenbach, K. V. Teeffelen, F. Laermer and H. Seidel, “New Capacitive Type MEMS Microphone”, IEEE MEMS Conference, 2010
    [13]A. Dehé, M. Wurzer, M. Füldner and U. Krumbein, “Design of a Poly Silicon MEMS Microphone for High Signal-to-Noise Ratio”, Solid-State Device Research Conference, 2013
    [14]J. J. Neumann and K. J. Gabriel, “CMOS-MEMS membrane for audio-frequency acoustic actuation”, Sensors and Actuators A: Physical, vol. 95, issues 2–3, 2002
    [15]C.-H. Huang, M.-H. Tsai, C.-H. Lee, T.-M. Hsieh, J.-C. Liou, L.-C. Chen, M.-C. Yip and W. Fang, “Design And Implementation Of A Novel CMOS MEMS Condenser Microphone With Corrugated Diaphragm”, IEEE Transducers Conference, 2011
    [16]C.-I. Chang, S.-C. Lo, C.-W. Wang, Y.-C. Sun and W. Fang, “Novel In-Plane Gap Closing CMOS MEMS Microphone with No Back-Plate”, IEEE MEMS Conference, 2014
    [17]C.-K. Chan, W.-C. Lai, M.-Wu, M.Y. Wang and W. Fang, “Design and Implementation of a Capacitive-Type Microphone With Rigid Diaphragm and Flexible Spring Using the Two Poly Silicon Micromachining Processes, IEEE SENSORS Journal, vol. 11, no. 10, 2011
    [18]C.-H. Je, J. Lee, W.-S. Yang, J. Kim and Y.-H. Cho, “A surface-micromachined capacitive microphone with improved sensitivity”, Journal of Micromechanics and Microengineering, vol. 23, no. 5, 2013
    [19]T. Kasai, S. Sato, S. Conti, I. Padovani, Fi. David, Y. Uchida,T. Takahashi and H. Nishio, “Novel Concept for a MEMS Microphone with Dual Channels for an Ultrawide Dynamic Range”, IEEE MEMS Conference, 2011
    [20]STMicroelectronics, “Tutorial for MEMS microphones”, AN4426 Application note, 2014
    [21]Z. Skvor, On the acoustical resistance due to viscous losses in the air gap of electrostatic transducers, Acustica, pp. 295-299, 1967
    [22]C.-T. Ko, S.-H. Tseng, and Michael S.-C. Lu, “A CMOS Micromachined Capacitive Tactile Sensor With High-Frequency Output”, Journal of Microelectromechanical systems, vol.15, no. 6, 2006
    [23]H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems”, Journal of Microelectromechanical Systems, vol. 6, pp. 157-176, 1996
    [24]H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: II. Distributed-parameter systems”, Journal of Microelectromechanical Systems, vol. 7, pp. 285-309, 1997
    [25]J.-Y. Chen, Y.-C. Hsu, S.-S. Lee, T. Mukherjee and G. K. Fedder, “Modeling and simulation of a condenser microphone”, Sensors and Actuators A: Physical, vol. 145–146, pp. 224–230, 2008
    [26]D.T. Martin, J. Liu, K. Kadirvel, R. M. Fox, M. Sheplak, and T. Nishida, “A Micromachined Dual-Backplate Capacitive Microphone for Aeroacoustic Measurements”, Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1289-1302, 2007
    [27]D.T. Martin, “Design, Fabrication, and Characterization of a MEMS Dual-Backplate Capacitive Microphone”, University of Florida PhD thesis, 2007
    [28]C. E. Fürst, “ Low Power / Low Voltage Interface Circuitry for Capacitive Sensors”,Techical University of Denmark PhD thesis, 1997
    [29]J. Č. H.-Christensen, “New Technology-Driven Approaches in the Design of Preamplifiers for Condenser Microphones”, Technical University of Denmark PhD thesis, 2009
    [30]A. Cheng, “Design of a Readout Scheme for a MEMS Microphone”, Delft University of Technology Master thesis, 2009
    [31]S. S. Rao, “Mechanical Vibrations”, 5 edition, PEARSON, 2011
    [32]G. K. Fedder, “CMOS-Based Sensors”, IEEE SENSORS Conference, 2005
    [33]Y.-C. Liu, M.-H. Tsai and W. Fang, “Pure oxide structure for temperature stabilization and performance enhancement of CMOS-MEMS accelerometer”, IEEE MEMS Conference, 2012
    [34]T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, Jin-Chern Chiou and W. Fang, “Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design”, IEEE SENSORS Conference, 2011
    [35]D. T. Martin, K. Kadirvel, R. M. Fox, T. Nishider, J. Liu and M. Sheplak, “Surface and bulk micromachined dual back-plate condenser microphone”, IEEE MEMS Conference, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE