簡易檢索 / 詳目顯示

研究生: 張安育
Chang, An-Yu
論文名稱: CMOS 8x8 電磁式微珠驅動 電容式生醫感測器陣列
A CMOS 8x8 Microbead-based capacitive biosensor array with magnetic actuation
指導教授: 盧向成
Lu, Shiang-Cheng
口試委員: 方維倫
Fang, Wei-Lun
邱一
Chiou, Yi
盧向成
Lu, Shiang-Cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 生醫感測指叉電極電感器磁珠
外文關鍵詞: Biosensor, Interdigitated electrodes, Inductor, magnetic bead
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由CMOS電路與MEMS結構製程技術整合,運用在電容式生醫感測器結構,可提供便利的生醫檢測。本文的感測區域製作僅使用CMOS標準製程,以避免製作MEMS結構之後製程,這樣在做生醫檢測時,本晶片只要改變在結構表面的功能化修飾之步驟,就可以感測各種不同的生物分子或病菌病毒。
    本晶片為指叉狀電極之電容式感測,是利用晶片製程上指叉電容表面上方的氧化矽層(Silicon dioxide)去做感測,因為氧化矽層可以做表面的生物改質,使得原本晶片的氧化矽表面被修飾成為佈滿抗體之表面。
    而本研究最大的不同點為抗原(即目標物抗原、互補抗體)不同於傳統的抗原(互補抗體),而是利用磁珠(magnetic beads)去當作目標物,所以要外加電感器圍繞在指叉電容外圍,以吸取磁珠到指叉電容上面做表面功能化修飾。
    所以我們使用磁珠作為感測目標,再將經過生物實驗修飾過表面之電容器加入磁珠之後,量測電容的變化量,而部份沒吸取到磁珠之電容器的電容變化量則只是在一個穩定的範圍內上下擺動,有吸取到磁珠的電容值則是變得比原本的還小,經由實驗組與控制組之差異性,我們可確定說本晶片實現了CMOS 8x8電容式生醫感測器。


    In this work, a standard CMOS process is used to integrate sensing circuits and MEMS structures to form capacitive biosensors. The sensing interface areas are formed without requiring post-CMOS micromachining processes, leading to convenient fabrication. Surface modification and functionalization can be performed for detection of a variety of biological molecules or bacteria viruses.
    This chip contains an array of interdigitated microelectrodes for capacitive sensing, in which the coated silicon dioxide on top is used for biomolecule immobilization. Anti-streptavidin antibody is used in this work, which is immobilized on chip surface while magnetic microbeads coated with streptavidin are driven to the sensing sites for specific binding.
    This is the major difference from conventional biosensors using target antigen and complementary antibody. On-chip inductors produce electromagnetic forces to attract microbeads to the center of each microcoil, where microelectrodes are located, for capacitive detection. Capacitance change due to magnetic beads remaining on the chip after specific binding is successfully demonstrated with an 8×8microcoil and capacitive sensor array.

    第1章 緒論...............................................1 1-1 研究動機.............................................1 1-2 CMOS-MEMS技術介紹....................................4 1-3 文獻回顧.............................................6 第2章 電容感測與線圈驅動電路架構...........................11 2-1 電容感測電路的運作機制...............................11 2-2 線圈驅動電流電路架構.................................19 2-3 感測與驅動結構設計與模擬..............................22 2-4 晶片電路佈局圖......................................35 第3章 生物實驗之方法與檢測................................37 3-1 生醫材料之介紹......................................37 3-2 表面固定化測試......................................40 第4章 晶片量測與感測結果..................................44 4-1 晶片檢視與封裝......................................44 4-2 實驗前準備..........................................48 4-3 晶片量測............................................50 第5章 未來展望與規劃.....................................69 參考文獻...................................................70

    [1] Hakho Lee, Yong Liu , Robert M. Westervelt, and Donhee Ham, Member, IC/Microfluidic Hybrid System for Magnetic Manipulation of Biological Cells,”IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 6, pp.1471-1480,2006
    [2] Lei-Guang Chen, Dong-Yi Wu, Michael S.-C. Lu, “An Integrated Micro-manipulation and Biosensing Platform Built in Glass-Based LTPS TFT Technology,’’ National Tsing Hua University, Department of Electrical Engineering, pp. 1-32, 2012.
    [3] J. A. Geen, S. J. Sherman, J. F. Chang, and S. R. Lewis, “Single-chip surface micromachined integrated gyroscope with 50/h Allan deviation,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1860-1866, 2002.
    [4] L. Moreno-Hagelsieb, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J. P. Raskin, and D. Flandre, “Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors,” Biosens. Bioelectron., vol. 22, no. 9-10, pp. 2199-2207, 2007.
    [5] A. Numnuam, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, and P. Thavarungkul, “Capacitive biosensor for quantification of trace amounts of DNA,” Biosens. Bioelectron., vol. 24, no. 8, pp. 2559-2565, 2009.
    [6] C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C. Paulus, M. Schienle, M. Augustyniak, and R. Thewes, “CMOS DNA sensor array with integrated A/D conversion based on label-free capacitance measurement,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2956–2964, 2006.
    [7] M. Hedström, I. Y. Galaev, and B. Mattiasson, “Continuous measurements of a binding reaction using a capacitive biosensor,” Biosens. Bioelectron., vol. 21, no. 1, pp. 41-48, 2005.
    [8] C. A. Betty, R. Lal, J. V. Yakhmi, and S. K. Kulshreshtha, “Time response and stability of porous silicon capacitive immunosensors,” Biosens. Bioelectron., vol. 22, no. 6, pp. 1027-1033, 2007.
    [9] S. Loyprasert, P. Thavarungkul, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, and P. Kanatharana, “Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode,” Biosens. Bioelectron., vol. 24, no. 1, pp. 78-86, 2008.
    [10] S. Zhang, J. Ding, Y. Liu, J. Kong, and O. Hofstetter, “Development of a highly enantioselective capacitive immunosensor for the detection of -amino acids,” Anal. Chem., vol. 78, no. 21, pp. 7592–7596, 2006.

    [11] . B. Prakash and P. Abshire, “On-chip capacitance sensing for cell monitoring applications,” IEEE Sens. J., vol. 7, no. 3-4, pp. 440–447, 2007.
    [12] andro Carraraa, Vijayender Bhallaa, Claudio Stagnia, Luca Beninib, Anna Ferretti ,Francesco Vallea, Andrea Gallotta , Bruno Riccòb, Bruno Samorì, “Label-free cancer markers detection by capacitance biochip,” Sensors and actuators b-chemical, vol. 36, pp. 163-172, 2009.
    [13] C. Berggren, B. Bjarnason, and G. Johansson, "Capacitive biosensors," Electroanalysis, vol. 13, pp. 173-180, 2001.
    [14] E. Ghafar-Zadeh, M. Sawan, and D. Therriault, "CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach," Analog Integrated Circuits and Signal Processing, vol. 59, pp. 1-12, 2009.
    [15] E. A. de Vasconcelos, N. G. Peres, C. O. Pereira, and V. L. da Silva, "Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor," Biosensors and Bioelectronics, vol. 25, pp. 870-876, 2009.
    [16] R. J. Baker, CMOS: Circuit design, layout, and simulation: Wiley-IEEE Press, 2010.
    [17] D. Berdat, A. C. M. Rodriguez, F. Herrera, and M. A. M. Gijs, "Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell," Lab Chip, vol. 8, pp. 302-308, 2007.

    [18] L. Yao, M. Hajj-Hassan, E. Ghafar-Zadeh, A. Shabani, V. Chodavarapu, and M. Zourob, "CMOS capactive sensor system for bacteria detection using phage organisms," Electrical and Computer Engineering,pp. 000877-000880, 2008.
    [19] S. M. Radke and E. C. Alocilja, "A microfabricated biosensor for detecting foodborne bioterrorism agents," IEEE Sensors Journal, vol. 5, pp. 744-750, 2005.
    [20] A. Qureshi, J. H. Niazi, S. Kallempudi, and Y. Gurbuz, "Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays," Biosensors and Bioelectronics, vol. 25, pp. 2318-2323, 2010.
    [21] S. M. Radke and E. C. Alocilja, "Design and fabrication of a microimpedance biosensor for bacterial detection," IEEE Sensors Journal, vol. 4, pp. 434-440, 2004.
    [22] S. K. Arya, G. Chornokur, M. Venugopal, and S. Bhansali, "Dithiobis (succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol," Biosensors and Bioelectronics, vol. 25, pp. 2296-2301, 2010.
    [23] Z. Zou, J. Kai, M. J. Rust, J. Han, and C. H. Ahn, "Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement," Sensors and Actuators A: Physical, vol. 136, pp. 518-526, 2007.
    [24] M. Javanmard, A. H. Talasaz, M. Nemat-Gorgani, F. Pease, M. Ronaghi, and R. W. Davis, "Electrical detection of protein biomarkers using bioactivated microfluidic channels," Lab Chip, vol. 9, pp. 1429-1434, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE