簡易檢索 / 詳目顯示

研究生: 林承翰
Lin, Cheng-Han
論文名稱: A Study of Millimeter-Wave Signals Generated by Shaped-Pulse-Excited Photonic Transmitters
藉由波型整形激發毫米波發射器產生毫米波訊號的研究
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 和田修
Osamu Wada
賀清華
Her, Tsing Hua
張存續
Chang, Tsun-Hsu
趙如蘋
Pan, Ru-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 70
中文關鍵詞: 波形塑型器毫米波發射器兆赫波毫米波
外文關鍵詞: pulse shaping, photonic transmitter (PT), terahertz (THz), millimeter wave (MMW)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We studied sub-Terahertz or millimeter wave (MMW) generation by a W-band photonic transmitter (PT) and direct space-to-time optical pulse shaper. The light source is a mode locked Erbium-doped fiber laser (λ=1560nm) of which the output can be tailored by a 4-f reflection-type pulse shaper with a liquid crystal spatial modulator. The tailored optical spectrum spread among several main frequency components (channels), each with a fixed spectral width and spacing. The shaped-pulse excited a near-ballistic uni-traveling-carrier photodiode-based photonic PT to convert the optical signal into MMW signals. This result shows as much as ~25 times of spectral power enhancement for the shaped pulses compared with the case quasi-sinusoidal optical modulation. The frequency of power-enhanced narrow-band MMW signal can be tuned over ~ 80 GHz. We also observe significant enhancement of MMW peak power with an increase of the reverse bias voltage. Furthermore, we demonstrate the dependence between the MMW field and the optical chirped pulse which excited PT. We want to utilize this characterization to study feedback control scheme for higher MMW. Finally, we first attempt the MMW waveform synthesis by the technique of space-to-time mapping. That may help us for studying ultra-wide-band scheme.


    我們研究毫米波的產生,藉由W波段光子發射器和直接空間對時間的波形塑型器。光波被塑形操作在通訊波段1560nm。將自訂的光譜分割成數個主要頻率元素,在固定波長將每個元素以固定頻寬分開。經過整形後的光脈衝激發以光子傳輸器為基底的near-ballistic uni-traveling-carrier photodiode (NBUTC-PD)轉換成為毫米波訊號。由實驗結果,此方法調制光譜功率相較於弦波調制大約是25倍。這種功率增強窄頻毫米波的方法可調制高達80GHz。我們也觀察到毫米波最大強度會隨著逆向偏壓增加而有明顯的增加。此外,我們也了確立了毫米波與激發毫米波發射器的啁啾光脈衝相依性。我們希望利用此特性研究回朔控制以達到最大毫米波。最後,我們利用「空間到時間映射」方法,首次嘗試毫米波的波型合成,其可幫助我們研究超寬帶的毫米波。

    Chapter 1 Introduction Chapter 2 Terahertz optoelectronics 2.1 Time-resolve pump-probe technique 2.2 Photoconductive antennas for generation 2.3 Photoconductive antennas for detection 2.4 Near-Ballistic Uni-Traveling-Carrier Photodiode (NBUTC-PD) Chapter 3 Pulse shaping system 3.1 Principles of chirp filter 3.1.1 Shaping using fixed masks 3.1.2 Programmable pulse shaping by liquid-crystal modulators 3.2 Chirp filters technology 3.2.1 Angular-dispersion chirp filters 3.2.2 Bragg-grating chirp filters 3.2.3 Pulse compression 3.3 Principles of pulse shaping science Chapter 4 Enhance millimeter-wave generation 4.1 THz spectral power enhancement 4.1.1 Shaped optical pulses enhancement narrow-band MMW 4.1.2 Chirped optical pulses enhancement 4.2 Experimental setup 4.2.1 Shaped optical pulses 4.2.2 Chirped optical pulses 4.3 Results and discussion Chapter 5 Photonic synthesis of waveforms 5.1 Space-time duality 5.2 Chirp processing 5.3 Experimental setup 5.4 Results and discussion Chapter 6 Conclusion 6.1 Conclusion 6.2 Future work REFERENCE 58

    [1] A. St¨ohr, A. Malcoci, F. Siebe, K. Lill, P. van derWaal, R. G¨usten, D. J¨ager: “Integrated photonic THz transmitter employing ultra-broadband traveling-wave 1.55 μm photodetectors,” in (Tech. Dig. Int. Topical Meeting on Microwave Photonics, Awaji 2002) pp. 69–72 179
    [2] Sukhotin, M., Brown, E.R., Gossard, A.C., Driscoll, D., Hanson, M., Maker, P., and Muller, R.: “Photomixing and photoconductor measurements on ErAs: InGaAs at 1.55 mm,” Appl. Phys. Lett., Vol. 82, No. 18, pp. 3116–3118, 2003
    [3] Mangeney, J., Merigault, A., Zerounian, N., Crozat, P., Blary, K., and Lampin, J.F.: “Continuous wave terahertz generation up to 2 THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55 mm wavelengths,” Appl. Phys. Lett., Vol. 91, art. 241102, 2007
    [4] T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, T. Furuta: “Unitraveling-carrier photodiodes”, in (Tech. Dig. Ultrafast Electronics and Optoelectronics, Lake Tahoe 1997) pp. 83–87 179
    [5] T. Ishibashi, T. Furuta, H. Fushimi, S. Kodama, H. Ito, T. Nagatsuma, N. Shimizu, Y. Miyamoto: “InP/InGaAs uni-traveling-carrier photodiodes,” IEICE Trans. Electron. E83-C, 938–949, 2000.
    [6] H. Ito, T. Furuta, T. Ishibashi: “High-speed and high-output uni-travelingcarrier photodiodes,” IEICE Trans. Electron. E84-C, 1448–1454, 179, 2001
    [7] T. Ishibashi, T. Furuta, H. Fushimi, H. Ito: “Photoresponse characteristics of uni-traveling-carrier photodiodes,” in (Proc. SPIE 2001) pp. 469–479 179
    [8] J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett., vol. 81, pp. 13-15, 2002
    [9] J. W. Shi, F. M. Kuo, H. J. Tsai, Y. M. Hsin, N. W. Chen, C. B. Huang, C. L. Pan, H. C. Chiang, and H. P. Chuang, “20-Gb/s on-off keying wireless data transmission by using bias modulation of NBUTC-PD based W-band photonic transmitter-mixer”, MWP 2010, Montreal, Quebec, Canada, 2010.
    [10] A. M.Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Amer. B, Vol. 5, pp. 1563–1572, 1988.
    [11] A. M.Weiner,D. E. Leaird, J. S. Patel, and J. R.Wullert, “Programmable shaping of femtosecond pulses by use of a 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron., Vol. 28, pp. 908–920, 1992.
    [12] A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron, Vol. 19, no. 3, pp. 161–238, 1995.
    [13] M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett., Vol. 20, pp. 1047–1049, 1995.
    [14] D.Yelin, D. Meshulach, andY. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett., Vol. 22, no. 23, pp. 1793–1795, 1997.
    [15] P. Emplit, J.-P. Hamaide, and F. Reynaud, “Passive amplitude and phase picosecond pulse shaping,” Opt. Lett., Vol. 17, pp. 1358–1360, 1992.
    [16] D. E. Leaird and A. M.Weiner, “Femtosecond optical packet generation via a direct space-to-time pulse shaper,” Opt. Lett., vol. 24, pp. 853–855, 1999.
    [17] B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature, Vol. 410, No. 6824, 60–63, 2001..
    [18] T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science, Vol. 299, No. 5605, 374–377,2003..
    [19] J. Ahn, A. V. Efimov, R. D. Averitt, and A. J. Taylor, “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses,” Opt. Express, Vol. 11, No. 20, 2486–2496, 2003.
    [20] Y. Liu, S.-G. Park, and A. M. Weiner, “Terahertz waveform synthesis via optical pulse shaping,” IEEE J. Quantum Electron. Vol. 2, No. 3, 709–719, 1996.
    [21] J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett. Vol.81, No. 1, 13–15, 2002.
    [22] Y. S. Lee, T. Meade, T. B. Norris, and A. Galvanauskas, “Tunable narroband terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett., Vol. 78, No. 23, 3583–3585, 2001.
    [23] T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using a modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett., Vol. 14, No. 11, pp. 1608–1610, Nov. 2002.
    [24] J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett., Vol. 27, pp. 1345–1347, 2002.
    [25] J. D. McKinney, D. S. Seo, D. E. Leaird, and A. M. Weiner, “Photonically assisted generation of arbitrary millimeter-wave and microwave electromagnetic waveforms via direct space-to-time optical pulse shaping,” J. Lightwave Technol., Vol. 21, pp. 3020–3028, 2003.
    [26] J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett., Vol. 15, No. 4, pp. 581–583, Apr. 2003.
    [27] I. S. Lin, J. D. McKinney, F. S. Toong, D. E. Leaird, and A. M. Weiner, “Microwave arbitrary waveform generation via open-loop reflective geometry Fourier transform pulse shaper,” in Proc. Conf. Lasers Electro- Optics (CLEO), San Francisco, CA, May 16–21, 2004.
    [28] N. E. Tielking and R. R. Jones, Phys. Rev. A 52, 1371, 1995.
    [29] J. Ahn, T. C. Weinacht, and P. H. Bucksbaum, Science 287, 463, 2000.
    [30] J. Ahn, D. N. Hutchinson, C. Rangan, and P. H. Bucksbaum, Phys. Rev. Lett. 86, 1179 (2001).
    [31] Y.-S. Wu, F.-H. Huang, Y.-J. Chan, J.-W. Shi, “High Performance Photodiode with Partially P-Doped Photo-absorption Layer for 40Gbit/sec Fiber Communication System” 2005 STFOC International Conference, TAIWAN, 2005.
    [32] Wei-Yu Chiu, Fan-Hsiu Huang, Yen-Shian Wu, Don-Ming Lin, Shu-Han Chen, Jin-Wei Shi, Jen-Inn Chyi and Yi-Jen," Reduced Mesa-Sidewall Leakage Current in InGaAs/InP MSM Photodetector by BCB Sidewall Process" in Proc., International Conference on Solid State Devices and Materials ,Tokyo, pp. 944-945, 2004.
    [33] M.-L. Lin, Yu-Tai Li, Jin-Wei Shi, Y.-S. Wu, F.-H. Huang, W.-S. Liu, J.-I. Chyi, Ja-Yu Lu, C.-K. Sun, and Ci-Ling Pan, “Separated-Transport-Recombination p-i-n Photodiode for High-Speed and High-Power Performance under Pulse-Mode and CW Operations” 2005 Optics and Photonics Taiwan, Tainan, A1N-59187, 2005.
    [34] Y.-S. Wu, P.-H. Chiu, J.-W. Shi, and Y.-J. Chan, “Analytical Model for High Performance Near-Ballistic Uni-Traveling-Carrier Photodiode” in Technical Digest of Optics and Photonics Taiwan'04, Tainan, TAIWAN, 2005.
    [35] Y.-S. Wu, J.-W. Shi, P.-H. Chiu, and Y.-J. Chan, “High Performance of Near-Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” 2005 Electron Devices and Materials Symposia, Kaohsiung, Taiwan, B-25, 2005.
    [36] T.-J. Hung, J.-W. Shi, S.-H. Chen, Y.-S. Wu, J.-I. Chyi, and Ying-Jay Yang, “InP Based Transverse Junction Superluminescent Diodes with Extremely Wide Optical Bandwidth (>460nm)” 2005 Optics and Photonics Taiwan, Tainan, A1N-56085, 2005.
    [37] J.-W. Shi, F.-M. Kuo, and M.-Z. Chou,”A Linear Cascade Near-Ballistic Uni-Traveling-Carrier Photodiodes with Extremely High Saturation-Current Bandwidth Product (6825mA-GHz, 75mA/91GHz) under a 50. Load,” Postdeadline Papers OFC 2010, San Diego. CA, USA, March 21-26, 2010
    [38] F.-M. Kuo, M.-Z. Chou, J.-W. Shi, “Linear-Cascade Near-Ballistic Unitraveling-Carrier Photodiodes With an Extremely High Saturation Current–Bandwidth Product,” J. Lightwave Technol. 29, 432, 2011.
    [39] J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C. Y. Liu, C.-Y. Chen, and J.-I. Chyi, “Extremely High Saturation Current-Bandwidth Product Performance of a Near-Ballistic Uni-Traveling-Carrier Photodiode with a Flip-Chip Bonding Structure,” IEEE J. of Quantum Electronics, Vol. 46, Issue 1, 80-86, 2010.
    [40] N. Li, X. Li, S. Demiguel, H. Chen et al., “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode,” IEEE Photon. Tech. Lett., Vol.16, No.3, 864–866, 2004.
    [41] J. W. Shi, C. Y. Wu, Y. S. Wu, P. H. Chiu, and C. C. Hong, “High-Speed, High-Responsivity, and High-Power Performance of Near- Ballistic Uni-Traveling-Carrier Photodiode at 1.55μm Wavelength,” IEEE Photon. Technol. Lett., Vol. 17, 1929–1931, 2005
    [42] Y.-S. Wu , J.-W. Shi and P.-H. Chiu "Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55", IEEE Photon. Technol. Lett., Vol. 18, p.938, 2006.
    [43] Y.-S. Wu, and J.-W. Shi, “Dynamic Analysis of High-Power and High-Speed Near-Ballistic Unitraveling Carrier Photodiodes at W-Band," IEEE Photon. Technol. Lett., vol. 20, pp. 1160-1162, July. 2008.
    [44] K. Kato,”Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech, Vol. 47, Issue 7, 1265, 1999
    [45] A. Hirata, H. Ishii, and T. Nagatsuma, “Design and characterization of millimeter-wave antenna for integrated photonic transmitter” Microwave Theory Tech., Vol. 49, 2157-2162, Nov. 2001.
    [46] Y. S. Wu , N. W. Chen and J. W. Shi "A", IEEE Photon. Technol. Lett., Vol. 20, 1799, 2008.
    [47] A. Hirata, T. Kosugi, N. Meisl, T. Shibata, and T. Nagatsuma,”High-Directivity Photonic Emitter Using Photodiode Module Integrated With HEMT Amplifier for 10-Gbit/s Wireless Link,” IEEE Trans. Microwave Theory Tech., Vol. 52, Issue 8, 1843, 2004
    [48] A. Ueda, T. Noguchi, H. Iwashita, Y. Sekimoto, M. Ishiguro, S. Takano, T. Nagatsuma, H. Ito, A. Hirata, and T. Ishibashi, “W-band waveguide photomixer using a uni-traveling-carrier photodiode with 2-mW output” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 1455-1459, 2003.
    [49] Ito, H., Kodama, S., Muramoto, Y., Furuta, T., Nagatsuma, T., Ishibashi, T., "High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes", Selected Topics in Quantum Electronics, IEEE Journal , Vol.10, No.4, 709 - 727, July-Aug, 2004.
    [50] A. Hirata, et al., “Transmission Characteristics of 120-GHz-Band Wireless Link using Radio-on-Fiber Technologies,” Journal of Lightwave Technology, Vol. 26, 2338-2344, 2008
    [51] F.- M. Kuo, Ho Yen-Lin, Jin-Wei Shi, Nan-Wei Chen, Wen-Jr Jiang, Chun-Ting Lin, Jason (Jyehong) Chen, Ci-Ling Pan, and Sien Chi, “12.5-Gb/s Wireless Data Transmission by Using Bias Modulation of NBUTC-PD Based W-Band Photonic Transmitter-Mixer,” Proc. OFC 2010, San Diego, CA, USA, OThF7, March, 2010.
    [52] F.-M. Kuo et al., “Remotely up-converted 20 Gbit/s error-free wireless on-off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer,” IEEE Photon. J. Vol. 3, 209, 2011.
    [53] H.-J. Tsai, N.-W. Chen, F.-M. Kuo, and J.-W. Shi,”Front-End Design of W-band Integrated Photonic Transmitter with Wide Optical-to-Electrical Bandwidth for Wireless-Over-Fiber Applications,” 2010 IEEE Microwave Theory Tech. Int. Microwave Symp., Anaheim, CA, USA, 740-743, May 23-28, 2010.
    [54] J.-W. Shi, F.M. Kuo, F.-C. Hong, Y.-S. Wu, “Dynamic analysis of a Si/SiGe-based impact ionization avalanche transit time photodiode with an ultrahigh gain-bandwidth product, ” IEEE Electron Device Letters, Vol.30, No.11, 1164-1166, Nov. 2009.
    [55] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” J. of Lightwave Technol., Vol. 24, Issue 4, 1725-1731, 2006.
    [56] A. M. Weiner, “Manipulation of ultrashort pulses”, in Ultrafast Optics. Hoboken, NJ: Wiley, pp. 362–421, 2009.
    [57] P.-H. Chiu, J.-W. Shi, C.-Y. Wu, S.-H. Hsieh, H.-C. Hsu, Ja-Yu Lu, F.-H. Huang, Y.-S. Wu, P.-S. Chen, and C.-W. Liu, “Si/SiGe Based Avalanche Photodiode with Partially P-Doped Photo-absorption Layer for High Responsivity and High-Power Performance” 2005 Optics and Photonics Taiwan, Tainan, A1N-40082, 2005.
    [58] P.-H. Chiu, J.-Y. Wu, Y.-S. Wu, J.-W. Shi, and C.-C. Hong, “High-Speed, High-Responsivity, and High-Power Performance of Near-Ballistic Uni-Traveling-Carrier Photodiode at 1.55μmWavelength” 2005 Optics and Photonics Taiwan, Tainan, A1N-69083, 2005.
    [59] H.-Y. Huang, J.-W. Shi, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, Ja-Yu Lu, F.-H. Huang, W.-C. Lai, “Nitride Based Photodiode and Light-Emitting Diode (LED) at 510nm Wavelength for Plastic Optical Fiber Communication” 2005 Electron Devices and Materials Symposia, Kaohsiung, Taiwan, B-42, 2005.
    [60] H.-Y. Huang, J.-W. Shi, J.-K. Sheu, S.-H. Hsieh, Y.-S. Wu, Ja-Yu Lu, F.-H. Huang, W.-C. Lai, “Nitride Based Photodiode at 510nm Wavelength for Plastic Optical Fiber Communication” 2005 Optics and Photonics Taiwan, Tainan, A1N-61485.
    [61] A.-C. Shiao, J.-W. Shi, C.-A. Hsieh, Y.-S. Wu, F.-H. Huang, S.-H. Chen, Y.-T. Tsai, and J.-I. Chyi, “High Performance Dual-Depletion-Region Electro-Absorption Modulator at 1.55μm Wavelength” 2005 Electron Devices and Materials Symposia, Kaohsiung, Taiwan, B-24, 2005.
    [62] Cing-Jung Chuang, “Femtosecond Pulse Shaping Methodology and its Applications in Tera-Hertz radiation enhancement,” Unpublished master’s thesis, University of Cheng Chung, Hsinchu.
    [63] F.-M. Kuo, J.-W. Shi, Nan-Wei Chen, C.-B. Huang, H.-P. Chuang, Hsuan-Ju Tsai, and Ci-Ling Pan, “20-Gb/s Error-Free Wireless Transmission Using Ultra-Wideband Photonic Transmitter-Mixer Excited with Remote Distributed Optical Pulse Train, ” Proc. OFC 2011, Los Angele, CA, USA, March, 2011, pp. OWT5, 2011.
    [64] P.-L. Liu, K.-J. Williams, M. Y. Frankel, and R. D. Esman, “saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech., Voll. 47, No. 7, pp. 1297-1303, 1999.
    [65] Y. Q. Liu, S. G. Park, and A. M. Weiner, “Enhancement of narrow-band terahertz radiation from photoconducting antenna by optical pulse shaping,” Opt. Lett., vol. 21, pp. 1762-1764, 1996.
    [66] J. Y. Sohn, Y. H. Ahn, D. J. Park, E. Oh, and D. S. Kim, “Tunable terahertz generation using femtosecond pulse shaping,” Appl. Phys. Lett., vol. 81, pp. 13-15, 2002.
    [67] F.-M. Kuo, J.-W. Shi, H.-C. Chiang, H.-P. Chuang, H.-K. Chiou, C.-L. Pan, N.-W. Chen, H.-J. Tsai, and C.-B. Huang, “Spectral Power Enhancement in a 100-GHz Photonic Millimeter-Wave Generator Enabled by Spectral Line-by-Line Pulse Shaping,” IEEE Photonics Journal, Vol. 2, No. 5, pp. 719-727, Oct., 2010.
    [68] T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron Devices, Vol. 35, No. 4, pp. 401–404, Apr. 1988.
    [69] A. Hirata, M. Harada, and T. Nagatsuma, “120-GHz wireless link using photonic techniques for generation, modulation, and emission of millimeter-wave signals,” J. Lightw. Technol., Vol. 21, No. 10, pp. 2145–2153, Oct. 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE