簡易檢索 / 詳目顯示

研究生: 譚凱文
Kai, Wen Tan
論文名稱: 應用於微波超寬頻汽車雷達之CMOS發射器及鎖相迴路設計
Design of Transmitter and Phase-locked Loop in CMOS for Microwave Ultra-wideband Automotive Radar Applications
指導教授: 徐碩鴻
Hsu, Shawn S.H.
朱大舜
Chu, Ta-Shun
口試委員: 謝協宏
朱大舜
孟慶宗
黃國威
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 89
中文關鍵詞: 汽車雷達超寬頻脈波脈波壓縮鎖相迴路CMOS發射器K頻帶
外文關鍵詞: Automotive radar, UWB pulse, pulse compression, PLL, CMOS TX, K band
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要呈現於不同汽車防撞雷達規格中,實現兩顆K頻段發射機晶片和一顆W頻段寬頻操作的鎖相迴路晶片。這些電路將以CMOS製程技術製作,達到低價、高整合度並符合預期的功能。
    首先,一個K頻段超寬頻脈波壓縮之汽車防撞雷達發射器以90 nm CMOS呈現,其中包含脈波產生器、混頻器、驅動放大器,鎖相迴路和時脈電路。具有數位編碼的脈波壓縮技術可以有效的提升解析度同時也改善訊雜比。我們提出的發射器可以快速且精準的產生編碼,且有低功率和小面積操作,並具有可程式化能力。相較於先前文獻所提出具有簡單編碼技術的超寬頻脈波雷達,本次所提出的發射器設計了高速移位暫存器,進一步達到15位元偽雜訊編碼且可使整體系統訊雜比提升至23.5分貝。量測結果驗證了正確的輸出波型且具有不同的編碼,並符合FCC所致定的規範,具有超過3Gb/s的調變速率(脈波重複頻率為6.125 MHz),解析度可達到5公分。
    第二顆電路改善了上一版的K頻段超寬頻雷達之發射器。在這次設計中提出了頻寬延展和脈波整型技術更進一步改善先前所提出的發射器,將原本的不歸零編碼替換成歸零編碼到壓縮脈波之中,輸出脈波之頻寬可以提升至兩倍,更可改變在雷達系統之中的解析度。接著,脈波整型技術使用了可調頻寬之低通濾波器,脈波整型技術可以壓抑輸出頻譜上的旁瓣之最大值,使整體壓縮脈波頻譜在提升雷達訊雜比之下,可以更符合FCC遮罩規範。並減少可調變率1.5Gb/s(相較於先前的工作少了一半的速率),整體解析度同樣可達到5公分,而脈波整型也可以壓抑5分貝的旁瓣功率。
    最後實現了一顆90 nm CMOS W頻帶寬頻操作的鎖相迴路,本次設計中提出了一種新穎的乘三頻率的技術,僅需要兩顆共振腔還有單一交互耦合對即可完成倍頻輸出且寬頻調整特性之壓控式震盪器,達到低功率操作。鎖相迴路之鎖定範圍在主頻率可達25.4-29.7 GHz,且在三倍諧波可獲得12.9 GHz (從76.2到89.1 GHz, 15.6%)的可調整範圍,當供應電壓為1.2伏特之下(功率消耗為62.4 mW),鎖相迴路之閉迴路相位雜訊之量測結果為-83.5 dBc/Hz在78.34 GHz,相較於目前文獻中,本次所提出的寬頻鎖相迴路是目前CMOS 鎖相迴路於相近操作頻率中達到最大可調頻寬的成果。


    This dissertation presents two K-band transmitter front-ends and a W-band wide tuning range PLL for automotive radar applications with different standards. These circuits are all implemented in CMOS technology aiming for low cost, high integration level, and desired functionality.
    First, a K-band ultra-wideband (UWB) pulse-compression (PC) automotive radar transmitter in 90 nm CMOS is presented, which is composed of the fully-integrated pulse generator, mixer, driver amplifier, phase-locked loop (PLL), and timing circuitry. The PC technique with coding gain can effectively enhance the detection resolution and also improve the signal-to-noise ratio. We propose a PC transmitter allowing fast and precise code generation with small power consumption and chip area, and also offering reconfigurable capability. Compared with previously reported UWB pulse radars with relatively simple coding schemes, the proposed transmitter features a much more challenging 15-bit pseudo noise (PN) code design using high speed shift registers, which can improve signal-to-noise ratio (SNR) up to 23.5 dB. The measured results demonstrate correct output waveforms corresponding to different modulation codes with the spectrum well confined under the regulation mask. With a modulation rate over 3 Gb/s (pulse repeat frequency of 6.125 MHz), a resolution of ~ 5 cm can be achieved.
    Second, a K-band UWB PC automotive radar transmitter modified based on the first work is presented. This design proposes the bandwidth extension and pulse shaping techniques to further improve the performance of the transmitter. The conversion of non-return zero (NRZ) to return zero (RZ) signal format is performed in each bits of compressed pulse. The bandwidth of the output pulse can be doubled, leading to increased resolution of radar systems. Besides, a pulse shaping technique is employed based on an adjustable low-pass filter. The pulse shaping technique can reduce the peak power of side lobe of the PC pulse to satisfy the FCC mask regulation and also enhance the spectrum efficiency. The output spectrum of PC pulse will be well-confined in the FCC mask to improve the SNR of the radar system. Under the a reduced modulation rate of 1.5 Gb/s (only half rate compared with that in the first work), a same resolution of ~ 5 cm can be achieved. Also, the proposed pulse shaping can reduce the peak power of side lobe by 5 dB.
    Finally, a wide tuning range W-band phase-locked loop (PLL) in 90 nm CMOS is presented. A novel frequency tripling topology with a single cross-coupled pair and a dual tank is proposed for the voltage-controlled oscillator (VCO) to achieve wide tuning characteristics under low power consumption. The locking range of the PLL at the fundamental tone is 25.4–29.7 GHz, and an excellent tuning range at the third harmonic frequency up to 12.9 GHz (from 76.2 to 89.1 GHz, 15.6%) is obtained. Under a 1.2 V supply voltage (Pdiss= 62.4 mW), the measured closed-loop phase noise of the PLL is 83.5 dBc/Hz at 78.34 GHz. To the best of our knowledge, the achieved turning range is the highest currently reported for the PLLs operating in a similar frequency range in CMOS technology.

    致謝………………………………………………………………………………...…………..i 摘要………………………………..……………..…………………………………………...iii Abstract……………………………………………………….……………………………….v Contents……………………………………………………………………………………...vii Table of Figures..……………………………………………………………………………...x Table of Tables..……………………………………………………………………………..xiv Publication List……………………………………………………………………………...xv CHAPTER I INTRODUCTION 1 1.1 Background and motivation 1 1.2 Organization of dissertation 4 CHAPTER II BASIC PRINCIPLES OF AUTOMOTIVE RADARS 5 2.1 Radar system 5 2.2 Continuous-wave (CW) radar 6 2.2.1 Frequency-modulated continuous-wave radar 8 2.2.2 Pseudo-noise code radar 9 2.3 Ultra-wideband pulse radar 10 2.4 Pulse compression technique 12 2.4.1 Analog pulse compression 13 2.4.2 Digital pulse compression 15 2.5 Summary and conclusion 21 CHAPTER III A RECONFIGURABLE PULSE-COMPRESSION AUTOMOTIVE RADAR TRANSMITTER IN 90 NM CMOS 22 3.1 Introduction 22 3.2 Transmitter architecture 24 3.2.1 Proposed the transmitter architecture 25 3.2.2 System specification 27 3.3 Circuit design 30 3.3.1 Reconfigurable Pulse Generator 30 3.3.2 High Speed Shift Registers 32 3.3.3 Mixer and Driver Amplifier 34 3.3.4 Phase-locked loop 37 3.4 Experimental results 39 3.5 Summary and Conclusion 43 CHAPTER IV A K-BAND UWB PULSE COMPRESSION TRANSMITTER WITH BANDWIDTH EXTENSION AND PULSE SHAPING TECHNIQUES 45 4.1 Introduction 45 4.2 Transmitter architecture 46 4.3 Circuit design 52 4.4 Experimental results 57 4.5 Summary and Conclusion 62 CHAPTER V A WIDE TUNING RANGE W-BAND PLL USING THE FREQUENCY TRIPLING TECHNIQUE. 64 5.1 Introduction 64 5.2 PLL design 65 5.3 FT-VCO design 67 5.4 Design of other building blocks 73 5.4.1. Divider Chain 73 5.4.2. Phase Frequency Detector and Charge Pump 74 5.4.3. Loop filter 75 5.5 Experimental results 78 5.5 Summary and Conclusion 83 CHAPTER VI CONCLUSION 84 REFERENCES 86

    [1 ] I.Gresham, A. Jenkins, R. Egri, C. Eswarappa, N. Kinayman, N. Jain, R. Anderson, F. Kolak, R. Wohlert, S. P. Bawell, J. Bennett, and J. -P. Lanteri, “Ultra-wideband radar sensors for short-range vehicular applications,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 9, pp. 2105–2122, Sep. 2004.
    [2 ] “First report and order, revision of part 15 of the Commission’s rules regarding ultra wideband transmission systems,” FCC, Washington, DC, ET Docket 98–153, 2002.
    [3] ETSI TR 102 263 V1.1.2 (2004-02), Radio equipment to be used in the 77 GHz to 81 GHz band, System Reference Document for automotive collision warning Short Range Radar.
    [4 ] I. Gresham, A. Jenkins, R. Egri, C. Eswarappa, F. Kolak, R. Wohlert, J. Bennett, and J. -P. Lanteri, “Ultra wide band 24 GHz automotive radar front-end,” in IEEE MTT-S Dig., 2003, pp. 369–372.
    [5 ] E. Ragonese, A. Scuderi, V. Giammello, E. Messina, and G. Palmisa-no, “A fully integrated 24 GHz UWB radar sensor for automotive applications,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2009, pp. 306–307.
    [6 ] P. Zhao, H. Veenstra, and J. R. Long, “A 24 GHz pulse-mode transmitter for short-range car radar,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2007, pp. 379–382.
    [7 ] H. P. Forstner et al., “A 77 GHz 4-channel automotive radar transceiver in SiGe,” in IEEE Radio Frequency IC Symp. Dig., 2008, pp. 233–236.
    [8 ] L. Moquillon et al., “Low-cost fully integrated BiCMOS transceiver for pulsed 24-GHz automotive radar sensors,” in Proc. IEEE Custom Integrated Circuits Conf., 2008, pp. 475–478.
    [9 ] S. T. Nicolson, P. Chevalier, B. Sautreuil, and S. P. Voinigescu, “Single-chip W-band SiGe HBT transceivers and receivers for Doppler radar and millimeter-wave imaging,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2206–2217, Oct. 2008.
    [10 ] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3469–3485, Dec. 2009.
    [11 ] J. Lee et al., ”A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
    [12 ] B. R. Mahafza and A. Z. Elsherbeni, MATLAB Simulations for Radar Systems Design. New York: CRC Press/Chapman & Hall, 2004.
    [13 ] H. Hashemi, G. Xiang, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe phased-array receiver-LO phase-shifting approach,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 614–626, Feb. 2005.
    [14 ] A. G. Stove, “Linear FMCW radar techniques,” Proc. IEE, Radar and Signal Processing, vol. 139, no. 5, pp. 343–350, Oct. 1992.
    [15 ] S. Trotta et al., “A 79 GHz SiGe-bipolar spread-spectrum TX for automotive radar,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 430–613.
    [16 ] J. Yang, G. Pyo, C.-Y. Kim, and S. Hong, “A 24-GHz CMOS UWB radar transmitter with compressed pulses,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp. 1117–1125, Apr. 2012.
    [17 ] K. W. Tan, A. H. Lo, T. S. Chu, and, S. S. Hsu, “ A K-Band Reconfigurable Pulse-Compression Automotive Radar Transmitter in 90-nm CMOS. IEEE Trans. Microw. Theory Techn., vol.60 on, 63, pp. 1380-1387, Apr. 2015.
    [18 ] A. Oncu, B. B. M. Badalawa, and M. Fujishima, “22–29GHz ultra-wideband CMOS pulse generator for short-range radar applications,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1464–1471, Jul. 2007.
    [19 ] M. Parlak, M. Matsuo, J. F. Buckwalter, "Analog Signal Processing for Pulse Compression Radar in 90-nm CMOS," IEEE Trans. Microw. Theory Techn., vol.60, no.12, pp.3810- 3822. Dec. 2012.
    [20 ] K.-W Tan, C.-M. Lai, P.-H Lu, C.-H Tu, J.-M Wu, S. S. H. Hsu, G.-W Huang, and T.-S Chu, “A 79 GHz UWB pulse-compression vehicular radar in 90nm CMOS,” in 2012 IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3.
    [21 ] B. Nikolic, V. G. Oklobdzija, V. Stojanovic, W. Jia, J. K.-S. Chiu, and M. M.-T. Leung, “Improved sense-amplifier based flip-flop: Design and measurements,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 876–884, Jun. 2000.
    [22 ] Y.-C Wu, S. S.-H. Hsu, K. K.-W Tan, and T.-S Su, “substrate noise coupling reduction in LC voltage-controlled oscillators,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 383-385, Apr. 2009.
    [23 ] X. Sun, G. Carchon, Y. Kita, K. Chiba, T. Tani, and W. De Raedt, “Experimental analysis of above-IC inductor performance with different patterned ground shield configurations and dummy metals,” in Proc. IEEE 36th EurMicrow. Conf., Sep. 2006, pp. 40–43.
    [24 ] A. Ghilioni, U. Decanis, E. Monaco, A. Mazzanti, and F. Svelto, “A 6. 5 mW inductorless CMOS frequency divider-by-4 operating up to 70 GHz,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2011, pp. 282–284.
    [25 ] T. A. Phan, J. Lee, V. Krizhanovskii, S. K. Han, and S. G. Lee, “A 18-pJ/pulse OOK CMOS transmitter for multiband UWB impulse radio,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp. 688–690, Sep. 2007.
    [26 ] J. R. Fernandes, H. Goncalves, L. B. Oliveira, and M. Silva, “A pulse generator for UWB-IR based on a relaxation oscillator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 239–243, Mar. 2008.
    [27 ] S. Diao, Y. Zheng, and C. H. Heng, “A CMOS ultra low power and highly efficient UWB-IR transmitter for WPAN applications,” IEEE Trans. Circuits Syst. II, vol. 56, no. 3, pp. 200–204, Mar. 2009.
    [28 ] T.-A. Phan, J. Lee , V. Krizhanovskii , S.-K. Han and S.-G. Lee, "A 18-pJ/pulse OOK CMOS transmitter for multiband UWB impulse radio", IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.688 -690 2007
    [29 ] B. Qin, X. Wang, H. Xie, L. Lin, H. Tang, A. Wang, H. Chen, B. Zhao, L. Yang, and Y. Zhou, “1.8 pJ/pulse programmable Gaussian pulse generator for full-band noncarrier impulse-UWB transceivers in 90-nm CMOS,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1555–1562, May 2010.
    [30 ] T. Norimatsu et al., “A UWB-IR transmitter with digitally controlled pulse generator,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1300–1309, Jun. 2007.
    [31 ] Y. Zhu, J. Zuegel, J. R. Marciante, and H. Wu, “Distributed waveform generator: A new circuit technique for ultra-wideband pulse generation, shaping and modulation,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 808–823, Mar. 2009.
    [32 ] D. D. Wentzloff and A. P. Chandrakasan, “Gaussian pulse generators for subbanded ultra-wideband transmitters,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1647–1655, Apr. 2006.
    [33 ] M. Cavallaro, T. Copani, and G. Palmisano, “A gaussian pulse generator for millimeter-wave applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 6, pp. 1212–1220, Jun. 2010.
    [34 ] D. Guermandi, et al., “A 79 GHz phase modulated 4 GHz BW CW radar Tx in 28nm CMOS,” IEEE International Solid-State Circuits Conference, pp. 250-251, Feb. 2014.
    [35] S. Kang, J-C. Chien, and A. M. Niknejad, “A W-band low noise PLL with fundamental VCO in SiGe for millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 23902404, Oct. 2014.
    [36 ] S. Kudszus et al., “W-band HEMT-oscillator MMIC’s using subharmonic injection locking,” IEEE Trans. Microw. Theory Techn., vol. 48, Dec. 2000, pp. 2526–2532.
    [37 ] L. Moquillon, P. Garcia, S. Pruvost, S. Le Tual, M. Marchetti, L. Chabert, N. Bertholet, A. Scuderi, S. Scaccianoce, A. Serratore, N. Piazzese, C. Dehos, and D. Morche, “Low-cost fully integrated BiCMOS transceiver for pulsed 24-GHz automotive radar sensors,” in Proc. IEEE Custom Integrated Circuits Conf., 2008, pp. 475–478.
    [38 ] I. Gresham, N. Kinayman, A. Jenkins, R. Point, A. Street, Y. Lumin, A. Khalil, R. Ito, and R. Anderson, “A fully integrated 24 GHz SiGe receiver chip in a low-cost QFN plastic package,” in IEEE Radio Frequency IC Symp., San Francisco, CA, 2006.
    [39 ] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeter wave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2100-2113. Aug. 2009.
    [40 ] S.-W. Chu and C.-K. Wang, “An 80 GHz wide tuning range push-push VCO with gm-boosted full wave rectification technique in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 203205, Apr. 2012.
    [41 ] C. Cao, Y. Ding, and K. K. O, “A 50-GHz phase-locked loop in 0.13-m CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1649–1656, Aug. 2007.
    [42 ] X. Yi, C. C. Boon, J.Sun, N. Huang, W. M. Lim, “A low phase noise 24/77 Ghz dual-band sub-sampling PLL for automotive radar applications in 65nm CMOS technology,” in IEEE Asian Solid-State Circuits Conf., pp. 11 –13. Nov. 2013.
    [43 ] A. Boudiaf, D. bachelet, and C. Rumelhard, “A high efficiency and low phase noise 38 GHz pHEMT MMIC tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546-2553, Dec. 2000.
    [44 ] J.-C Chiu, C.-P Chang, and Y.-H Wang, “A 12-36Ghz pHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19-21, Jan. 2006.
    [45 ] Y. Campos-roca, L. Verweyen, M. Fernández-Barciela, E. Sánchez, M. C. Currás-Francos, W. Bronner, A. Hülsmann, and M. Schlechtweg, “An optimized 25.5-76.5 GHz pHEMT-based coplanar frequency tripler,’’ IEEE Microwave Guided Wave Lett., vol. 10, no. 6, pp 242-244, June 2000.
    [46 ] Z. Chen, C.-Cheng Wang, and P. Heydari, “W-band frequency synthesis using a ka-band PLL and two different frequency triplers,” IEEE RFIC Symp. Dig., June 2011.
    [47 ] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS sub-harmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869-1878, Aug. 2008.
    [48 ] C.-Y. Wu, M.-C. Chen, and Y.-K. Lo, “A phase-locked loop with injection frequency multiplier in 0.18m cmos for V-band applications,” IEEE Trans, Microw. Tech., vol. 57, no. 7, pp. 1629-1635, July 2009.
    [49 ] Y.-L. Tang and H. Wang, “Triple-push oscillator approach: theory and experiments,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp 1472-1479, Oct. 2001
    [50 ] J. Choi and A. Mortazawi, “Design of push-push and triple-push oscillators for reducing 1/f noise upconversion,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp 3407-3414, Nov. 2005.
    [51 ] A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp 2716-2729, Dec. 2008.
    [52 ] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp 594-601, Apr. 2004
    [53 ] T.-H. Chien, C.-S. Lin, C. L. Wey, Y.-Z. Juang, and C.-M. Huang, “High-speed and low-power programmable frequency divider,” in Proc. IEEE ISCAS, pp. 4301–4304, May 2010.
    [54 ] W. Rhee, “Design of high performance CMOS charge pumps in phase locked loop,”. in Proc. IEEE Int. Symp. Circuits and Systems, 1999, vol. 1, pp. 545-548
    [55 ] J. S. Lee, M. S. Keel, S. I. Lim, and S. Kim, “Charge pump with perfect current matching characteristics in phase-locked loops,” Electronics lett., pp. 1907-1908, Nov. 2000.
    [56 ] Z. Xu et al., “An integrated frequency synthesizer for 8186 GHz satellite communications in 65 nm CMOS,” IEEE RFIC Symp., May 2010, pp. 5760.
    [57 ] C.-C. Wang, Z. Chen, and P. Heydari, “W-band silicon based frequency synthesizers using injection-locked and harmonic triplers”, IEEE Trans. Microw. Theory Techn, vol. 60, no. 5, pp. 1307-1320. May 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE