簡易檢索 / 詳目顯示

研究生: 吳靖邦
論文名稱: 應用群集分析求解混合型資料的製造單元形成問題
Fuzzy clustering approach to mixed-variable types of cell formation data
指導教授: 洪文良
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 48
中文關鍵詞: 單元形成問題FRC演算法非相似度矩陣符號型資料模糊資料混合型資料
外文關鍵詞: Cell formation, FRC algorithm, dissimilarity matrix, Symbolic data, Fuzzy data, Mixed-variable data
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在群組技術(group technology )的觀念下,對於如何完成單元形成問題(cell formation)有兩個基本的程序。一是工件族的形成,另一個則是機械群的形成。在本篇文章中,我們將使用FRC 群集演算法(Dav´e and Sen, 2002)去解決此工件族與機械群的形成步驟。然後利用群組效率指標( Chandrasekharan and Rajagopalan, 1986)去決定出最佳的單元形成結果。此外我們也在本文中提出一個適用於符號型資料與模糊型資料的非相似性距離測度公式。從實例的研究探討中,顯示此模式可得到良好的實例驗證結果。


    Cellular manufacturing is a useful way to improve the overall manu- facturing performance.The key step in designing any cellular manufactur- ing system is the identification of part-families and machine-groups for the creation of cells, in which the parts in each cell are processed with the minimum movement in to other cells. There are two basic procedures for cell formation (CF) in group technology. One is part-family formation and the other is machine-cell formation. In this paper, we apply the fuzzy relational data clustering (FRC) algorithm (see Dav´e and Sen, 2002) to form part-family and machinecell. Then we use the grouping efficiency (see Chandrasekharan and Rajagopalan, 1986)to find the optimal CF. Besides,we give a modified dissimilarity measure for symbolic and fuzzy data.The real case study
    shows that the proposed approach performs well.

    目錄 第一章 緒論............................................... 1 1.1 研究動機.............................................. 1 1.2研究目的............................................... 2 第二章 文獻探討............................................ 4 2.1單元形成問題........................................... 4 2.2模糊聚類分析........................................... 8 第三章混合型特徵資料內的非相似距離定義、FRC演算法及群組效率的探討 9 3.1混合型特徵資料及其非相似性距離定義.........................9 3.2 FRC演算法的探討....................................... 19 3.3群組效率指標探討....................................... 21 第四章實例演算........................................... 22 4.1工件分族之實例演算..................................... 22 4. 2混合型機械/工件之單元形成實例.......................... 28 第五章結論............................................... 45 參考文獻................................................ 47

    參考文獻
    [1] Chandrasekharan, M.P., and Rajagopalan, R., “ZODIAC-an
    algorithm for concurrent formation of part-families and
    machine-cells,” International Journal of Production
    Research, 25, 835-850, (1987).
    [2] Chan, F.T.S., Mak, K.L., Luong, L.H.S., and Ming,
    X.G.,“Machine-component grouping using genetic
    algorithm,”Robotics & Computer-Integrated
    manufacturing, 14, 339-346,(1998).
    [3] Diday, E., Gowda,K.C. Symbolic clusteringusinga new
    dissimilarity measure, Pattern Recognition 24 (6)
    (1991) 567–578.
    [4] Diday, E., Gowda,K.C., Symbolic clusteringusinga new
    similarity measure, IEEE Trans. System Man Cybernet.
    22 (1992) 368–378.
    [5] Davé,R.N., Sen, S., Robust Fuzzy Clustering of
    Relational Data, IEEE Trans. Systems, vol.10,
    pp.713-726 no. 6, 12,2002
    [6] El-Sonbaty, Y. A. and Ismail ,M.A.Ismail., Fuzzy
    clustering for symbolic data. IEEE Trans. Systems,
    6(2) (1988) 195-204
    [7] Hathaway, R. J., Devenport, J. W., and Bezdek, J.C.,
    “Relation duals of the c-means clustering algorithms,
    Pattern Recog., vol. 22, pp. 205–212, 1989
    [8] Hathaway, R.J., Bezdek, J.C., Pedrycz ,W., A parametric
    model for fusing heteroeneous fuzzy data, IEEE Trans.
    Fuzzy Systems 4 (3) (1996) 270–281.
    [9] Kaufman, L. and Rousseeuw,P. J., Finding Groups in Data:
    An Introduction to ClusterAnalysis. New York: Wiley,
    1990.
    [10] O.Felix Offodile and Abraham Mehrez,and John Grznar
    Kent State University, Kent, Ohio“Cellular
    Manufacturing:A Taxonomic Review Framework”Journal
    of Manufacturing Systems Volume 13/No.3
    [11] Onwubolu, G. C., and Songore, V., “A tabu search
    approach to cellular manufacturing systems,”
    Production Planning & Control,11, 153-164, (2000).
    [12] Yang, M.S.,A survey of fuzzy clustering,Mathematical
    and Computer Modeling,vol18,pp.1-16,1993
    [13] Yang, M.S., Ko,C.H., On a class of fuzzy c-numbers
    clustering procedures for fuzzy data, Fuzzy Sets and
    Systems84 (1996) 49–60.
    [14] Yang, M.S., Hwang, P.Y. and Chen, D.H.,Fuzzy clustering
    algorithms for mixed feature variables, Fuzzy Sets
    and Systems 141 (2004) 301–317.
    [15] Yang, M.S., Hung, W.L. and Cheng, F.C., Mixed-variable
    fuzzy clustering approach to part family and machine
    cell formation for GT applications, International
    Journal of Production economics 103 ,185-198(2006)
    [16] Wemmerlov, U. and Hyer, N.L., Cellular manufacturing
    in the U.S. industry:a survey of users,
    ”International Journal of Production Research, 27,
    no.9,1511-1530 (1989).
    [17]Wemmerlov, U. and Hyer, N.L., Reserch issues in
    cellular manufacturing,International Journal of
    Production Research,25, no.9, 413-431, (1987).
    [18] Zandeh,L.A., Fuzzy sets,Information and Control,
    vol.8,pp.338-353,1965
    [19] 吳社邦, 群組技術手冊 CS-1 分類與編碼系統 ,中興管理顧問公司,
    1985,2
    [20] 劉孝平, 以「類似技術」建構製造工廠核心製程知識系統之研究機器
    群形成過程修正法---綜合指標法及實例研究,中原大學企業管理學系碩
    士學位論文,1992.6
    [21] KHK STOCK GEARS:
    http://www.khkgears.co.jp/tw/index.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE