研究生: |
連佳祺 Angela |
---|---|
論文名稱: |
仿鯊魚皮圖案之PDMS抑止金黃色葡萄球菌生物膜形成之研究 Patterned PDMS Mimicking Shark-skin Deterring Biofilm Formation of Staphylococcus aureus |
指導教授: | 蔡哲正 |
口試委員: |
陳逢叡
陳柏宇 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 仿生材料 、抑制生物膜貼附 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在醫院中醫療人員、病人及病人家屬容易接觸到許多的病菌,其中以在病人皮膚上的金黃色葡萄球菌(S. aureus) 是院內外科手術傷口及置入性醫療器材的主要感染病源,容易藉著傷口而感染進入人體內部,較嚴重有肺炎(pneumonia)、乳腺炎(mastitis)、靜脈炎(phlebitis)、腦膜炎(meningitis)、泌尿道感染(urinary tract infections)及深層的感染(deep-seated infections)如骨髓炎(osteomyelitis)、感染性心內膜炎(endocarditis)等,甚至造成病人致死,如中毒形休克症候群(toxic shock syndrome)。因此,本研究在聚甲基矽氧烷 (Polydimethylsiloxane) 表面上,模仿具有抗菌性的鯊魚皮表面,探討是否在S. aureus流動時,可以有效抑制S. aureus生物膜的行形成,以應用在改良置入性導管表面,例如血液輸送導管、尿導管、胸管等。
本研究操作在靜態和流動的狀態,目的在於觀察在工程製作出的有圖案的表面是否能抑制S. aureus生物膜的生長。實驗的結果顯示這些有起伏的表面能減少S. aureus之附著與繁殖。在流動的情形下,非對齊圖形表面抑制了生物膜的群聚及生成。S. aureus之面積覆蓋百分比為 48.2 %,而對齊圖形表面的為 20 %、非對齊圖形表面的為 10.3 %。在靜態情形下,對齊圖形表面與非對齊圖形表面S. aureus之面積覆蓋皆減少。然而非對齊圖形表面相較於對稱圖形表面並未明顯減少S. aureus的附著。
Once the S. aureus biofilms disperse and flow into the blood, the clusters of
S. aureus will cause serious disease, even death. Finding effective antifouling surface for catheters is an important issue to reduce possible problems that can be induced by bacterial infection.
This study was conducted in two situations, with S. aureus cultivated solution in static mode and in flow mode. S. aureus was cultivated for 21 days to observe the biofilm development on patterned PDMS substrates with flat, aligned, and unaligned surfaces.
The purpose of the study is to investigate the development of bacterial attachment and colonization on an engineered topography with a well-defined pattern. We are concerned with the design and characterization of surface microtopographies that effectively control bioadhesion. The results of this experiment showed that topographical surfaces have the ability to decrease S. aureus attachment and colonization. In flowing mode, unaligned patterned surfaces disrupted the colonization and formation of biofilm. The percentage of the area coverage for
S. aureus on flat, aligned patterned, and unaligned patterned surfaces are 48.2 %, 20 %, and 10.3 %, respectively. In static mode, both aligned patterned and unaligned patterned surfaces decrease the colonization percentage. However, the effectiveness of unaligned patterned surfaces on the reducing of the S. aureus attachment is about the same as that for the aligned patterned surface.
References
[1] D. M. Yebra, S. Kiil, K. D. -Johansen, ”Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings”, Progress in Organic Coatings, 50, 75–104 (2004).
[2] J. F. Schumacher, M. L. Carman, T. G. Estes, ”Engineered antifouling microtopographies – effect of feature size,geometry, and roughness on settlement of zoospores of the green alga Ulva”, Biofouling, 23(1-2), 55-62 (2007).
[3] http://marineinsight.com/wp-content/uploads/2011/06/image003.jpg
[4] J. P. Maréchal, C. Hellio, ”Challenges for the Development of New Non-Toxic Antifouling Solutions”, Int J Mol Sci., 10(11), 4623–4637 (2009).
[5] http://www.treehugger.com/clean-technology/shark-week-and-biomimicry-four
-futuristic-technologies-inspired-by-sharks.htm
[6] B. Bhushan, “ Biomimetics inspired surfaces for drag reduction and
oleophobicity/philicity”, Beilstein J Nanotechnol, 2, 66–84 (2011).
[7] http://www.medicinenet.com/staph_infection/article.htm
[8] http://www.thedorsalfin.com/tag/massachusetts-great-white-shark/
[9] http://www.dailymail.co.uk/sciencetech/article-1082186
[10] C. J. Long, J. F. Schumacher, P. A.C. Robinson II, J. A. Finlay, M. E. Callow,
J. A. Callow and A. B. Brennan, “A model that predicts the attachment behavior
of Ulva linza zoospores on surface topography”, Biofouling, 26(4), 411–419
(2010).
[11] K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, A. B. Brennan, ”Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus” , Biointerphases , 2 (2) (2007).
[12] Y. O. Schumacher, C. Ahlgrim, T. Pottgiesser, ”Evaluation of anthropometrical reference parameters for hemoglobin mass in endurance athletes”, J Sports Med Phys Fitness, 48(4), 509-14 (2008).
[13] E. M. Purcell., “Life at low Reynolds-number”, Am J Phys, 45, 3–11 (1977).
[14] http://biology.plosjournals.org/perlserv/
[15] http://www.biofilm.org/biofilm
[16] R. M. Donlan, “Biofilms and device-associated infections”, Emerging Infectious Diseases, Vol. 7, No. 2 (2001).
[17] P. S. Stewart, J. W. Costerton, “Antibiotic resistance of bacteria in
Biofilms”, Lancet 358 (9276), 135–8 (2001).
[18] J. B. Kaplan, “ Biofilm dispersal: mechanism, clinical implications, and
potential therapeutic uses”, J DENT RES, 89, 205-218 (2010).
[19] Y. Liu, ”Metabolic response of biofilm to shear stress in fixed-film culture”, Journal of Applied Microbiology, 90, 337–342 (2001).
[20] D. L. Nelson, M. M. Cox, ”Oxidative Phosphorylation and
Photophosphorylation Oxidative Phosphorylation : Bacteriorhodopsin: A Light-Driven Proton Pump”, Lehniger principles of Biochemistry, five edition (2009).
[21] http://www.bbioo.com/uploadfile/200511/20051114092558775. if&w=231&h
=247&ei=RfERUPueLYrdmAWezIDwAw&zoom=1&biw=1366&bih=584
[22] http://www.e-radiography.net/radtech/o/optical_density.htm
[23] http://en.wikipedia.org/wiki/Absorbance
[24] http://syrris.com/flow-products/asia-modules/asia-tube-reactors