研究生: |
陳怡妤 Chen, I-Yu |
---|---|
論文名稱: |
紙牌遊戲對於國小五年級學生幾何單元數學創造力影響之研究 Investigating the Influence of Board Games on the Mathematical Creativity of the Fifth Grade Students Towards Geometry |
指導教授: |
陳正忠
Chen, Jeng-Chung |
口試委員: |
秦爾聰
Chin, Erh-Tsung 林勇吉 Lin, Yung-Chi |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所碩士在職專班 Mathematics & Science Education Master Inservice Program |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 數學創造力 、紙牌遊戲 |
外文關鍵詞: | mathematical creativity, board games |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在藉由紙牌遊戲增進學生於五年級數學領域幾何單元的數學創造力,透過分析學生的流暢性、變通性、原創性與精緻性,評估學生藉由紙牌遊戲發展出的數學創造力,並且比較不同數學能力學生的數學創造力表現及學生在平面圖形數學創造力與立體形體數學創造力表現之差異性。
本研究採準實驗研究法,對實驗組與對照組進行數學創造力問卷施測,實施前測與後測,並且針對實驗組進行紙牌遊戲教學。施測對象為國小五年級學生,實驗組29人,對照組25人。施測結果以敘述性統計、相關係數、成對樣本T檢定、ANOVA單因子變異數分析等方法進行研究結果分析與探討。
本研究結果概述如下:
一、藉由紙牌遊戲,可以提升學生在平面圖形中數學創造力的原創性。
二、中間程度的學生在紙牌遊戲-線對稱心臟病的變通性與精緻性中,表現優於
低程度的學生,達顯著差異。
三、平面圖形與立體形體,在相關係數方面,流暢性、變通性、原創性與精緻
性,皆呈現低度相關。
This research aims to use board games to enhance students’ mathematical creativity in geometry unit of fifth grade mathematics. By analyzing fluency, flexibility, originality and elaboration, it evaluates students’ mathematical creativity developed through board games. The research also compares the mathematical creativity performance of students with different mathematical abilities, and the differences between students’ mathematical creativity performance of plane figures and three-dimensional figures.
This study adopted quasi-experimental method by using the questionnaire of mathematical creativity test for the experimental group and the control group, implementing pre-test and post-test, and teaching board games to the experimental group. The subjects of this test were fifth grade students in elementary school, with 29 people in the experimental group and 25 people in the control group. The test results were analyzed and discussed by means of descriptive statistics, correlation coefficient, paired sample t test, ANOVA single factor analysis of variance.
The results of this research are summarized below:
1. Students can enhance their originality in mathematical creativity in plane figures through board games.
2. The students with medium level performed better than the students with low level in flexibility and elaboration of the board game-line symmetry slapjack, the results reached significant differences.
3. The test results were analyzed by correlation coefficient in plane figures and three-dimensional figures, fluency, flexibility, originality and elaboration, all showed low correlation.
中文部分
方永泉(2012)。遊戲、文化及教育。臺北市:學富文化。
王銘玉(2021)。數學遊戲融入國小四年級分數教學之行動研究。國立清華大學,新竹
市。
江麗莉譯(1997)。兒童遊戲與遊戲環境。臺北:五南圖書公司。
吳幸玲(2011)。兒童遊戲與發展(第二版)。台北:揚智。
吳幸玲、郭靜晃(譯)(2003)。James E. Johnson, James F. Christie & Thomas D.
YawKey. 兒童遊戲:遊戲發展的理論與實務(第二版)。臺北縣:揚智文化。
吳德邦(1999)。臺灣中部地區國小學童范西里幾何思考層次之研究-筆試部分。八十
八學年度師範學院教育學術論文發表會論文集。
李庭歡(2021)。運用數學遊戲對國中資源班學生進行數學學習之個案研究(為未出版
之碩士論文)。國立清華大學,新竹市。
杜佩紋(2010)。幼兒遊戲。台北:華格那。
周士傑、梁淑坤(2007)。遊戲融入小學六年級數與計算教學的設計。台灣數學教師(電
子)期刊,11,12-32。
林軍治(1992)。兒童幾何思考之van Hiele水準分析研究-VHL、城鄉、年級、性別、
認知型式與幾何概念理解及錯誤概念之關係。臺中市:書恆出版社。
張芸夢(2020)。台灣中學生數學創造力之研究。國立清華大學,新竹市。
教育部(2003)。創造力教育白皮書。臺北市:作者。[Ministry of Education. (2003). White
paper of creative education. Taipei, Taiwan: Author. ]
許扶堂(2007)。遊戲融入兒童課後數學學習之行動研究-以國小五年級弱勢族群兒童
為例(為未出版之碩士論文)。國立臺中教育大學,臺中市。
郭靜晃(1992)。兒童遊戲:遊戲發展的理論與實務。臺北:揚智出版社。
陳正曄(2019)。在數學臆測教學下學生數學創造力的展現。國立清華大學,新竹市。
黃怡芳(2004)。國小學童二位數加減運算之數學遊戲設計研究。國立中山大學,高雄
市。
黃哲男(2002)。於動態幾何環境下國中生動態心像建構與幾何推理之研究。國立臺灣
師範大學數學研究所碩士論文,台北市。
黃毅英(1997)。邁向大眾數學的數學教育。台北市:九章出版社。
楊斐羽、梁朝雲(2004)。將傳統遊戲的玩性因素導入電子遊戲之設計-一個遊戲心理
學的基礎研究。教學科技與媒體,69,20-38。
葉若瑩(2008)。遊戲不只是遊戲-PlayDebrief-Replay之「認真的遊戲者」意涵探討。
網路社會學通訊,69。
葉憲明(2022)。台灣中學數學資優生數學創造力之研究。國立清華大學,新竹市。
趙翊君、梁淑坤(2017)。團體遊戲之研發及融入五年級數學複習對學生學習之改變。
第九屆科技與數學教育國際學術研討會暨數學教學工作坊,國立台中教育大學。
劉一民(1999)。以遊戲為鏡-體貼教育的初心。學生輔導,60卷,32-45。
劉宣谷(2015)。數學創造力的文獻回顧與探究。臺灣數學教育期刊,2(1),23-40。
鄭肇禎(1991)。智慧遊戲。香港:商務印書館。
盧銘法(1996)。國小中高年級學生幾何概念之分析研究-以van Hiele幾何思考水準與
試題關聯結構分析為探討基礎。國立臺中師範學院國民教育研究所碩士論文。
賴勤薇(2011)。數學遊戲融入國中數學科函數單元教學成效之研究。國立新竹教育大
學,新竹市。
謝定澄(2021)。六年級學生在臆測教學下數學創造力的表現。國立清華大學,新竹市。
簡楚瑛(1993)。「遊戲」之定義、理論與發展的文獻探討。新竹師院學報,6,105-133。
饒見維(1996)。國小數學遊戲教學法。臺北市:五南出版社。
英文部分
Berlyne, D. (1960). Conflict, arousal and curiosity. New York: McGraw-Hill.
Bruner, J. (1972). The nature and uses of immaturity. American Psychologist, 27, 687-708.
Commission of the European Communities. (2005). Recommendation of the European Parliament and of the Council on key competences for lifelong learning. Brussels, BelgiumBE: Author.
Bruner, J. S. (1960). The process of education. Cambridge: Harvard University Press.
Duval, R. (1995). Geometrical Pictures: Kinds of Representation and Specific Processings. In
R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education, 138, 142-157. Berlin, Heidelberg: Springer Berlin Heidelberg.
Duval R. (1998). Geometry from a Cognitive Point of View. In C. Mammana and Villani (Eds.),
Perspective on the Teaching of Geometry for the 21st century: an ICMI study. Dordrecht: Kluwer.
Ellis, M. (1973). Why people play. Englewood Cliffs, NJ: Prentice-Hall.
Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical
thinking (p42-53). Dordrecht: Kluwer.
Freud, S. (1961). Beyond the pleasure principle. New York: Norton.
Frost, L. (1991). The New Urban Frontier: Urbanisation and City-Building in Australia
and the American West. Sydney: New South Wales University Press.
Guildford, J. P. (1967). The nature of human intelligence.
Haylock, D. (1997). Recognizing mathematical creativity in school children. ZDM, 29(3),
68-74.
Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children.
Educational studies in mathematics, 18(1), 59-74.
Hollands, R. (1972). Educational Technology: Aims and Objectives in Teaching Mathematics
(Cont.). Mathematics in school, 1(6), 22-23.
Johnson, J. E. ; Christie, J. F. ; Yawkey, T. D. (1987). Play and Early Childhood
Development. Glenview: Scott Foresman.
Kelly, T. L. (1939). The selection of upper and lower groups for the validation of test items.
Journal of Educational Psychology, 30(1), 17-24.
Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics
through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61.
Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of
mathematical creativity. In Proceedings of the 31st international conference for the psychology of mathematics education (Vol. 3, pp. 161-168).
Leikin, R., & Levav-Waynberg, A. (2009). Development of teacher’s conceptions through
learning and teaching: The meaning and potential of multiple-solution tasks. Canadian Journal of Science, Mathematics and Technology Education, 9(4), 203-223.
Leikin, R. (2013). Evaluating mathematical creativity: The interplay between multiplicity and
insight. Psychological Test and Assessment Modeling, 55(4), 385.
Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically
excelling adolescents: What makes the difference? Zdm, 45(2), 183-197.
Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing
knowledge and creativity in geometry. The Journal of Mathematical Behavior, 31(1), 73-90.
Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the
Gifted, 30(2), 236-260.
Piaget, J. (1962). Play, dreams and imitation in childhood. New York: Norton.
Polya, G. (1973). How to solve it: A new aspect of mathematical method. Princeton, NJ:
Princeton University Press.
Smilansky, S. (1968). The effects of sociodramatic play on disadvantaged preschool children.
New York: Wiley.
Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for
improving education in the classroom. New York, NY: The Free Press.
Sutton-Smith, B. (1983). One hundred of change in play research. TAASP Newsletter, 9(2),
p13-17.
Torrance, E. P. (1974). Torrance tests of creative thinking. Princeton, NJ: Personal Press/Ginn
and Company.
van De Walle, J. (2004). Elementary and Middle School Mathematics: Teaching
Developmentally. Teaching Developmentally. 5th Edition.
van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Orlando,
FL: Academic Press.
Vygotsky, L. S. (1976). Play and its role in the mental development of the child. In J. s.
Bruner, A. Jolly & K. Sylva (Eds.), Play: Its role in development and evolution (p. 537-554). New York: Basic Books.