簡易檢索 / 詳目顯示

研究生: 陳嘉宏
Gary Chen
論文名稱: 運用資料探勘探討晶圓廠在製品數量與控管方法
Using Data Mining to Investigate WIP Levels and Control Methods of a Fab
指導教授: 劉志明
Chih-Ming Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 在製品存貨瓶頸漂移倒傳遞類神經網路決策樹演算法
外文關鍵詞: WIP, Bottleneck shifting, Artificial Neural Networks, Decision Tree
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 性電子產品的多元化發展,半導體產業的需求端已經大量的膨脹,許多半導體界廠商,莫不持續改進製程、縮短製造時間、提高良率,以期在半導體產業的競爭中超越其他廠商搶下訂單。而在製造流程複雜,且生產週期時間長的的晶圓製造廠中,生產週期時間、產出量、機台利用率等重要指標,均與在製品存貨(Work In Process, WIP)有密切關聯。過去的研究也證明若維持適當在製品存貨水準,便能兼顧最大產出量與最短生產週期時間。而限制理論中提出瓶頸工作站為系統產出的限制,必須掌握瓶頸並分析其限制,才能使系統的產出達到預期。因此本研究發展瓶頸工作站與全廠的在製品水準設定之方法,藉由倒傳遞類神經網路找出瓶頸工作站,針對不同的瓶頸工作站發展設定全廠在製品水準的方法,以確保在最大產出前提下,維持最低的全廠在製品水準。

    亦強調非瓶頸機台必須配合瓶頸機台,以避免瓶頸機台前的等候線中沒有在製品的情形發生,然而一個晶圓廠機台種類繁多,如何辨認哪一些才是關鍵非瓶頸機台,對於有效管理晶圓廠是個重要的課題。本研究考量瓶頸漂移的情況下,以決策樹演算法找出與瓶頸工作站強烈相關的上游非瓶頸機台,並分析這些關鍵非瓶頸機台如何影響瓶頸工作站的在製品水準。最後再應用倒傳遞類神經網路探討瓶頸機台與關鍵非瓶頸機台相關影響變數與全廠在製品水準的關係,藉以設定理想的全廠在製品水準,並發展控管與調整的方法,讓管理者只需要聚焦於瓶頸工作站及其上游關鍵機台,便得以用最低全廠在製品水準來維持瓶頸站之安全在製品水準,以達到全廠最大產出。


    In a wafer fabrication facility (fab), cycle time, throughput, and utilization are strongly related to work-in-process (WIP). Past researchers have proved that maintaining a suitable number of WIP can get the maximum throughput and the minimum cycle time. Therefore, WIP is one of the most important performance indices in a fab.

    Based on the Theory of Constraints, managing bottleneck workstations is important for controlling the throughput of a system. In this study, we use the artificial neural network to find bottleneck workstations in a fab, and set their suitable WIP levels. A decision tree model is used to identify important non-bottleneck upstream workstations that are strongly related to bottleneck workstations, and then their influence on the bottleneck workstations are analyzed. Then some artificial neural network models for analyzing the WIP levels of bottleneck workstations and the total WIP in a fab are developed. These models can provide managers useful information for setting the suitable total number of WIP to maintain the required WIP levels for the bottleneck workstations and adjusting key non-bottleneck upstream workstations to reduce the total WIP level.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 3 1.4 論文架構 3 第二章 文獻探討 5 2.1 CONWIP系統之文獻探討 5 2.2 在製品水準之設定 8 2.2.1 豐田汽車看板數量模型 8 2.2.2 馬可夫鏈計算最適在製品存貨水準 9 2.2.3 以系統模擬設定最適在製品存貨水準 9 2.3 瓶頸漂移現象之文獻探討 10 2.3.1 限制理論與瓶頸資源 10 2.3.2 辨別瓶頸工作站 11 2.3.3 瓶頸漂移成因 14 2.4 類神經網路(Artificial Neural Network) 16 2.4.1 類神經網路基本原理 16 2.4.2 倒傳遞類神經網路模型簡介 19 2.5 決策樹演算法 21 2.5.1 C4.5演算法 22 2.5.2 CHAID演算法 23 2.5.3 CART演算法 23 第三章 研究方法 25 3.1 找出瓶頸並設定瓶頸工作站之理想在製品水準 27 3.1.1 初步挑選有瓶頸特性之機台 27 3.1.2 建立機台之在製品-產出關係之倒傳遞類神經網路模型 28 3.1.3 以類神經網路模型預測在製品與產出,辨認瓶頸機台 30 3.1.4 各因子之敏感度分析 31 3.2 瓶頸漂移分析 31 3.3 設定理想的全廠在製品水準 33 3.3.1 運用決策樹演算法找出影響瓶頸工作站之上游機台變數 33 3.3.2 以類神經網路模型預測全廠在製品與瓶頸在製品水準 34 3.3.3各因子之敏感度分析-關鍵上游機台變數的影響 35 第四章 案例探討 37 4.1 案例公司背景介紹 37 4.2 設定瓶頸工作站之理想在製品水準 37 4.2.1初步挑選有瓶頸特性之機台 37 4.2.2 建立各機台之倒傳遞類神經網路模型 39 4.2.3 以類神經網路模型找出瓶頸機台 40 4.2.4 瓶頸機台類神經網路模型敏感度分析 44 4.3 瓶頸漂移過程分析 48 4.4設定理想的全廠在製品水準 50 4.4.1 建立各瓶頸之關鍵上游機台變數決策樹模型 50 4.4.2 建立瓶頸機台與全廠在製品水準之倒傳遞類神經網路模型 53 4.4.3 設定全廠在製品水準 54 4.4.4 全廠在製品水準類神經網路模型敏感度分析 56 4.4.5 關鍵上游機台管理方法 67 4.5 本章結論 70 第五章 結論與建議 73 5.1 結論 73 5.2 未來研究方向 73 參考文獻 75

    [1] Framinan, J. M., P. L. Gonzalez and R. R. Usano, “The CONWIP production control system: review and research issues,” Production Planning & Cotrol, vol. 14, NO. 3, pp. 255-265, 2003.
    [2] Goover, M. P., Automation, Production System and Computer Aided Manufacturing, Pretice-Hall, Inc., Englewood Cliffs, N. J., pp. 76-78, 1980.
    [3] Hopp, W. J. and M. L. Spearman, "Throughput of a Constant Work in Process Manufacturing Line Subject to Failure," International Journal of Production Research, Vol. 29, No. 3, pp. 635-655, 1991.
    [4] Monden, Y., Toyota Production System: Practical Approach to Management, 1983.
    [5] Philipoom, P. P., L. P. Rees, B.W. Taylor, and P. Y. Huang, “An investigation of the factors influencing the number of kanbans required in the implementation of the JIT technique with kanbans,” International Journal of Production Research, Vol. 25, No. 3, pp. 457-472, 1987.
    [6] Deleersnyder, J. L., T. J. Hodgson, H. Muller, and P. J. O’Grady, “Kandan controlled pull systems: analytic approach,” Management Science, Vol. 35, No. 9, pp. 1079-1091, 1989.
    [7] Wang, H. and H. P. Wang, “Optimum number of kanbans between two adjacent workstations in a JIT system,” International Journal of Production Economics. Vol. 29, pp. 89-101, 1993.
    [8] Graham, I., “Comparing trigger and kanban control of flow-time manufacture,” International Journal of Production Research, Vol. 30, No. 10, pp. 2351-2362, 1992.
    [9] Goldratt, E. M., and R. E. Fox, The Race, North River Press, Croton-on-Hudson, N.Y., 1986.
    [10] Goldratt, E. M., Theory of Constraints, North River Press, Croton-on-Hudson, N.Y., 1990.
    [11] Srikanth, M. L. and M. M. Umble, Synchronous Management: Profit-Based-Management for 21th Century, Volume One, Spectrum Publishing, Guilford, Conn., 1997.
    [12] Srikanth, M. L. and M. M. Umble, Synchronous Management: Profit-Based-Management for 21th Century, Volume Two, Spectrum Publishing, Guilford, Conn., 1997.
    [13] Roser, C., M. Nakano, and M. Tanaka, “Shifting Bottleneck Detection,” Proceeding of the 2002 Winter Simulation Conference, 1079-1086., 2002.
    [14] Lawrence, S. R. and A. H. Buss, “Shifting production bottlenecks: cause, cures and conundrums,” Production and Operations Managements, 3(1), 22-37, 1994.
    [15] Cox, J. F. I., and M. S. Spencer, The Constraints Management Handbook, Boca Raton, Florida, 1997.
    [16] Law, A. M., and D. W. Kelton, “Simulation Modeling & Analysis,” McGraw Hill, 2000
    [17] Skridharan, V., L. B. William and V. Udayabhanu, “Freezing the master production schedule under rolling planning horizon,” Management Science, 33, 1137-1149, 1992.
    [18] Ronen, B. and Y. Spector “Managing system constraints: a cost/utilization approach,” International Journal of Production Research, 30(9), 2045-2061, 1992.
    [19] Chiang, S. Y., C. T. Kuo, and S. M. Meerkov, “Bottlenecks in Markovian Production Lines: A Systems Approach,” IEEE Transactions on Robotics and Automation, 14(2), 352-359, 1998.
    [20] Adams, J., E. Balas and D. Zawack, “The Shifting Bottleneck Procedure for Job-Shop Scheduling,” Management Science, 34(3), 391-401, 1988.
    [21] Uzsoy, R., and C. S. Wang, “Performance of decomposition procedures for job shop scheduling problems with bottleneck machines,” International Journal of Production Research, 38(6), 1271-1286, 2000.
    [22] Han, K., and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann, CA, 2001.
    [23] Mitchell, T. M., Machine Learning, McGraw-Hill, New York, 1997.
    [24] Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, CA, 1993.
    [25] Jacobsen, C., U. Zscherpel, and P. Perner, “A Comparison between neural networks and decision trees,” Proceedings of International Work. Machine Learning and Data Mining in Pattern Recognition, MLDM, LNAI: 1715, Springer-Verlag, 1999.
    [26] Perreault, W. D., and H. C. Barksdale, “A model-free approach for analysis of complex contingency data in survey research”, Journal of Marketing Research, Vol. 17 No.November, pp.503-15, 1980.
    [27] Lin, Y. H. and C. E. Lee, “A Total Standard WIP Estimation Method for Wafer Fabrication,” European Journal of Operation Research, vol. 131, no 1, pp.78-94, 2001.
    [28] 戚志揚, 「半導體製造在製品存貨動態分配及控制方法」,國立清華大學工業工程 與管理學系碩士論文,民國95年。
    [29] 黃承龍、張盛鴻、李榮貴,「瓶頸漂移分析與對策之研究」,中國工程學刊,第18卷,第4期,頁73-81,民國90年。
    [30] 黃承龍、張盛鴻、李榮貴,“An order releasing method to avert bottleneck shifting in a wafer fab”,中國工程學刊,第15卷,第5期,頁449-456,民國90年。
    [31] 葉怡成,「類神經網路模式應用與實作」,儒林圖書公司,台灣,民國89年。
    [32] 蔡孟陶,「倒傳遞類神經網路收斂分析之研究」,海洋大學,碩士論文,民國94年。
    [33] 林易俊,「應用模糊類神經網路於積體電路之微影製程機台故障診斷分析」,成功大學,碩士論文,民國93年。
    [34] 黃柏璋,「使用決策樹方法發掘連續數值屬性多區間分類規則」,成功大學,碩士論文,民國93年。
    [35] 蔡智政,「應用CART決策樹與資料視覺技術於低良率晶圓成因探討」,元智大學,碩士論文,民國90年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE