研究生: |
曾賢德 Shien-Der Tzeng |
---|---|
論文名稱: |
利用靜電力顯微鏡研究電荷儲存及膠體奈米粒子操控 Charge Storage and Colloidal Nanoparticle Manipulation Studied by Electrostatic Force Microscopy |
指導教授: |
果尚志
Shangjr Gwo |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 靜電力顯微鏡 、奈米碳管探針 、氮化矽 、氮化矽-氧化矽-矽 、奈米粒子 、組裝 、電荷儲存 、資訊儲存 |
外文關鍵詞: | electrostatic force microscopy, carbon nanotube tip, silicon nitride, nitride-oxide-silicon (NOS), nanoparticle, assembly, charge trapping, data storage |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
靜電力顯微鏡可以量測表面電性。根據計算模擬及實驗結果可知,作用於探針上的靜電力與探針針尖的形狀及尺寸極為相關。利用奈米碳管作為針尖,我們可以得到橫向空間解析度好於 5 奈米的靜電力影像。在資訊儲存的應用方面,我們利用一般導電探針在氮化矽-氧化矽-矽結構上注入電荷,並示範出小於 35 奈米的電荷注入點,高達 520 Gbit/in^2 的超高儲存密度,小於正負 10 伏特的低寫入電壓,以及 500 ns 的寫入時間。
從儲存於氮化矽-氧化矽-矽結構中的電荷密度在高溫下的衰減行為,我們得知電荷主要往垂直表面方向脫離。藉由靜電力顯微鏡量測 250 °C到 370 °C 間的電荷衰減特性,並假設電荷衰減的機制為其受熱激發後再穿隧通過氧化矽層至矽基板,我們定量得出在氮化矽-氧化矽介面上有相當多的電荷儲存於深的位能缺陷中。此外,我們推論出在此量測溫度範圍內,這些儲存於介面的電子的激發頻率與絕對溫度平方相關。但是,儲存於介面的電洞的脫離頻率則否。這些介面電子的儲存位能及密度各約為 1.52 電子伏特以及每平方公分 1.46x10^12 個。對介面電洞則是1.01 電子伏特以及每平方公分 1.08x10^12 個。此外,介面電子缺陷的捕捉截面積約為 4.8x10^-16 平方公分。
這些儲存於氮化矽-氧化矽-矽結構中的電荷可以進一步用來控制膠體奈米粒子在表面上的吸附。我們發現以硫醇修飾表面的金以及硒化鎘(核)/硫化鋅(殼)奈米粒子都會被帶負電的表面吸引,並推論出他們在甲苯溶液中都帶有正電。金奈米顆粒可以在帶負電荷的表面上單層緊密的組裝,且形成的線寬可達到前所未及的 30 奈米。此外,其吸附作用由電泳力主導。相對的,硒化鎘/硫化鋅奈米顆粒除了電泳力之外,也受介電泳作用力影響。另外,我們藉由重複組裝程序,成功的將不同的奈米粒子分次組裝於同一表面上。這些實驗方法與結果相信對未來那些以奈米粒子為基礎的科技有相當的助益。
Electrostatic force microscopy (EFM) can be used for sensing electrical properties of surface. Both simulation and experimental results indicate that the electric force acting on the probe is very depends on the shape and dimensions of the tip. By using a carbon nanotube tip, the lateral spatial resolution of EFM image is demonstrated to be better than 5 nm. For the application on data storage, we demonstrated small bit size (< 35 nm), ultrahigh areal density (~520 Gbit/in^2), low writing voltage (< ±10 V), and short writing time (500 ns) can be achieved by using a conventional conducting probe to inject charges (electrons and holes) in to an ultrathin Nitride-Oxide-Silicon (NOS) structure.
From the charge retention behavior at high temperature, we found that decay of trapped charges in ultrathin NOS is mainly vertical process. The charge trapping properties of both electron and hole were further quantitatively determine by variable-temperature high vacuum EFM. From charge retention characteristics at temperatures between 250 °C and 370 °C and assuming thermal emission followed by oxide tunneling is the dominant decay mechanism, we deduced that there are considerable deep trap centers at the nitride-oxide (NO) interface. Besides, the retention behavior of electrons trapped at NO interface is dominated by the temperature dependent thermal emission rate: eth = αT^2exp(-Et/kBT). By contrast, the retention behavior of holes trapped at NO interface is dominated by the temperature independent emission rate: eesc = Aescexp(-Et/kBT). For electron, the interface trap energy and trap density were determined to be about 1.52 eV and 1.46x10^12 cm^2, respectively. For hole, they were about 1.01 eV and 1.08x10^12 cm^2, respectively. Furthermore, the capture cross section of electron was extracted as 4.8x10^-16 cm^2. These results may be useful for ascertaining the origin of trap centers in NOS.
Charge patterns on NOS were further used to control the assembly of colloidal nanoparticles. We found that both thiol-terminated gold and CdSe/ZnS core-shell nanoparticles can be assembled on negatively charged patterns, and deduced that these nanoparticles bear positive charges. The assembled gold nanoparticles can form close-packed monolayer at an unprecedented spatial resolution of about 30 nm. Besides, the assembly of the gold nanoparticles is dominated by the electrophoretic (EP) force. By contrast, the dielectrophoretic (DEP) force acting on the CdSe/ZnS nanoparticles may compete with the EP force. Furthermore, nanoparticles with diverse properties can be successively assembled onto different charge patterns on the same surface by repeating the assembly procedure with different nanoparticle colloids. These experimental methods and results would be beneficial for further development of nanoparticle-based applications.
1. R. C. Barrett and C. F. Quate, “Charge storage in a nitride-oxide-silicon medium by scanning capacitance microscopy,” J. Appl. Phys. 70, 2725-2733 (1991).
2. C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, Ø. Fischer, and J.-M. Triscone, “Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures” Science 276, 1100-1103 (1997).
3. D. Weller and A. Moser, “Thermal effect limits in ultrahigh-density magnetic recording,” IEEE Trans. Magn. 35, 4423-4439 (1999).
4. Scanning Force Microscopy: with Applications to Electric, Magnetic and Atomic Forces, Rev. Ed., edited by Dror Sarid (Oxford University Press, New York, 1994).
5. Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications, 2nd Ed., edited by Dawn Bonnell (Wiley-VCH, New York, 2001).
6. S. Iwamura, Y. Nishida, and K. Hashimoto, “Rotating MNOS disk memory device,” IEEE Trans. Electron Devices 28, 854-860 (1981).
7. B. D. Terris and R. C. Barrett, “Data storage in NOS: Lifetime and Carrier-to-noise measurements,” IEEE Trans. Electron Devices 42, 944-949 (1995).
8. H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, and D. Rugar, “High-density data storage using proximal probe techniques,” IBM J. Res. Develp. 39, 681-700 (1995).
9. I. Fujiwara, S. Kojima, and J. Seto, “High density charge storage memory with scanning probe microscopy,” Jpn. J. Appl. Phys. 35, 2764-2769 (1996).
10. W. M. D. Wright and D. G. Chetwynd, “Can charge writing aid nanotechnological manipulation?” Nanotechnology 9, 133-142 (1998).
11. H. O. Jacobs and A. Stemmer, “Measuring and modifying the electric surface potential distribution on a nanometre scale: A powerful tool in science and technology,” Surf. Interface Anal. 27, 361-367 (1999).
12. D. M. Schaadt, E. T. Yu, S. Sankar, and A. E. Berkowitz, “Charge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy,” Appl. Phys. Lett. 74, 472-474 (1999).
13. J. T. Jones, P. M. Bridger, O. J. Marsh, and T. C. McGill, “Charge storage in CeO2/Si/CeO2/Si(111) structures by electrostatic force microscopy,” Appl. Phys. Lett. 75, 1326-1328 (1999).
14. J. W. Hong, S. M. Shin, C. J. Kang, Y. Kuk, Z. G. Khim, and S. Park, “Local charge trapping and detection of trapped charge by scanning capacitance microscope in the SiO2/Si system,” Appl. Phys. Lett. 75, 1760-1762 (1999).
15. G. H. Buh, H. J. Chung, and Y. Kuk, “Real-time evolution of trapped charge in a SiO2 layer: An electrostatic force microscopy study,” Appl. Phys. Lett. 79, 2010-2012 (2001).
16. S. Belaidi, P. Girard, and G. Leveque, “Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions,” J. Appl. Phys. 81, 1023-1030 (1997).
17. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy,” Nature 384, 147-150 (1996).
18. H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura, S. H. Yoshimura, and K. Takeyasu, “Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid,” Appl. Phys. Lett. 74, 4061-4063 (1999).
19. J. H. Hafner, C.-L. Cheung, T. H. Oosterkamp, and C. M. Lieber, “High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies,” J. Phys. Chem. B 105, 743-746 (2001).
20. J. H. Hafner, C. L. Cheung, and C. M. Lieber, “Growth of nanotubes for probe microscopy tips,” Nature 398, 761-762 (1999).
21. S. Akita, H. Nishijima, Y. Nakayama, F. Tokumasu, and K. Takeyasu, “Carbon nanotube tips for a scanning probe microscope: their fabrication and properties,” J. Phys. D: Appl. Phys. 32, 1044-1048 (1999).
22. C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, “Growth and fabrication with single-walled carbon nanotube probe microscopy tips,” Appl. Phys. Lett. 76, 3136-3138 (2000).
23. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, “Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology,” Nature 394, 52-55 (1998).
24. S. S. Wong, A. T. Woolley, T. W. Odom, J.-L. Huang, P. Kim, D. V. Vezenov, and C. M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73, 3465-3467 (1998).
25. J. H. Hafner, C. L. Cheung, A. T. Woolley, and C. M. Lieber, “Structural and functional imaging with carbon nanotube AFM probes,” Prog. Biophys. Mol. Biol. 77, 73-110 (2001).
26. T. Uchihashi, N. Choi, M. Tanigawa, M. Ashino, Y. Sugawara, H. Nishijima, S. Akita, Y. Nakayama, H. Tokumoto, K. Yokoyama, S. Morita, and M. Ishikawa, “Carbon-nanotube tip for highly-reproducible imaging of deoxyribonucleic acid helical turns by noncontact atomic force microscopy,” Jpn. J. Appl. Phys. 39, L887-L889 (2000).
27. V. Barwich, M. Bammerlin, A. Baratoff, R. Bennewitz, M. Guggisberg, C. Loppacher, O. Pfeiffer, E. Meyer, H.-J. Guntherodt, J.-P. Salvetat, J.-M. Bonard, and L. Forró, “Carbon nanotubes as tips in non-contact SFM,” Appl. Surf. Sci. 157, 269-273 (2000).
28. K. Umemura, J. Komatsu,T. Uchihashi,N. Choi, S. Ikawa,T. Nishinaka, T. Shibata, Y. Nakayama, S. Katsura, Akira Mizuno, H. Tokumoto, M. Ishikawa, and R. Kuroda, “Atomic force microscopy of recA-DNA complexes using a carbon nanotube tip,” Biochem. Bioph. Res. Co. 281, 390-395 (2001).
29. E. S. Snow, P. M. Campbell, and J. R. Novak, “Single-wall carbon nanotube atomic force microscope probes,” Appl. Phys. Lett. 80, 2002-2004 (2002).
30. T. Larsen, K. Moloni, F. Flack, M. A. Eriksson, M. G. Lagally, and C. T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes,” Appl. Phys. Lett. 80, 1996-1998 (2002).
31. H. Dai, N. Franklin, and J. Han, “Exploiting the properties of carbon nanotubes for nanolithography,” Appl. Phys. Lett. 73, 1508-1510 (1998).
32. E. B. Cooper, S. R. Manalis, H. Fang, H. Dai, K. Matsumoto, S. C. Minne, T. Hunt, and C. F. Quate, “Terabit-per-square-inch data storage with the atomic force microscope,” Appl. Phys. Lett. 75, 3566-3568 (1999).
33. S. B. Arnason, A. G. Rinzler, Q. Hudspeth, and A. F. Hebard, “Carbon nanotube-modified cantilevers for improved spatial resolution in electrostatic force microscopy,” Appl. Phys. Lett. 75, 2842-2844 (1999).
34. J. A. Dagata, F. S. S. Chien, S. Gwo, K. Morimoto, T. Inoue, J. Itoh, and H. Yokoyama, “Electric force microscopy with a single carbon nanotube tip” Proc. SPIE 4344, 58 (2001).
35. Ch. Sommerhalter, Th. Glatzel, Th. W. Matthes, A. Jäger-Waldau, M.Ch. Lux-Steiner, “Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces,” Appl. Surf. Sci. 157, 263–268 (2000).
36. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, “Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air,” Appl. Phys. Lett. 56, 2001-2003(1990).
37. K. Morimoto, F. Perez-Murano, and J.A. Dagata, “Density variations in scanned probe oxidation,” Appl. Surf. Sci. 158, 205-216 (2000).
38. S.-D. Tzeng, S. Gwo, and J. A. Dagata, unpublished (2006).
39. Y. Martin, D. W. Abraham, and H. K. Wrickramasinghe, “High-resolution capacitance measurement and potentiometry by force microscopy,” Appl. Phys. Lett. 52, 1103-1105 (1988).
40. E. Durand, Electrostatique, Tome II Problèmes généraux, Conducteurs (Masson &cie, 1966).
41. C. Böhm, C. Roths, U. Müller, A. Beyer, and E. Kubalek, Beam Injection Assessment of defects in Semiconductors (BIADS ‘93), Bologna, Italy, 1993.
42. H. W. Hao, A. M. Baro, and J. J. Saenz, “Electrostatic and contact forces in force microscopy,” J. Vac. Sci. Technol. B 9, 1323-1328 (1991).
43. L. H. Pan, T. E. Sullivan, V. J. Peridier, P. H. Cutler, and N. M. Miskovsky, “Three-dimensional electrostatic potential, and potential-energy barrier, near a tip-base junction,” Appl. Phys. Lett. 65, 2151-2153 (1994).
44. H. Yokoyama, T. Inoue, and J. Itoh, “Nonresonant detection of electric force gradients by dynamic force microscopy,” Appl. Phys. Lett. 65, 3143-3145 (1994).
45. Pei-bau Zhou, Numerical Analysis of Electromagnetic Fields (Springer-Verlag, Berlin Heidelberg, 1993).
46. A. Patil, J. Sippel, G. W. Martin, and A. G. Rinzler, “Enhanced functionality of nanotube atomic force microscopy tips by polymer coating,” Nano Lett. 4, 303-308 (2004).
47. A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton, and C. M. Lieber, “Chemical force microscopy: Exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies,” J. Am. Chem. Soc. 117, 7943-7951 (1995).
48. H. Takano, J. R. Kenseth, S.-S. Wong, J. C. O'Brien, and M. D. Porter, “Chemical and biochemical analysis using scanning force microscopy,” Chem. Rev. 99, 2845-2890 (1999).
49. T. D. Krauss and L E. Brus, “Charge, polarizability, and photoionization of single semiconductor nanocrystals,” Phys. Rev. Lett. 83, 4840-4843 (1999).
50. S. J. Tans, C. Dekker, “Molecular transistors: Potential modulations along carbon nanotubes,” Nature 404, 834-835 (2000).
51. M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, and H. Park, “Resonant electron scattering by defects in single-walled carbon nanotubes,” Science 291, 283-285 (2001).
52. A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, Erik H. Anderson, A. Zettl, and Paul L. McEuen, “Scanned probe microscopy of electronic transport in carbon nanotubes,” Phys. Rev. Lett. 84, 6082-6085 (2000)
53. M. T. Woodside and P. L. McEuen, “Scanned probe imaging of single-electron charge states in nanotube quantum dots,” Science 296, 1098-1101 (2002).
54. H. Sugimura, K. Hayashi, N. Saito, O Takai, and N. Nakagiri, “Surface potential images of microstructured organosilane self-assembled monolayers acquired by Kelvin probe force microscopy,” Jpn. J. Appl. Phys. 40, L174-L176 (2001).
55. H. Aozasa, I. Fujiwara, A. Nakamura, and Y. Komatsu, “Analysis of carrier traps in Si3N4 in oxide/nitride/oxide for metal/oxide/nitride/oxide/silicon nonvolatile memory,” Jpn. J. Appl. Phys. 38, 1441-1447 (1999).
56. G. Rosenman, M. Naich, M. Molotskii, Yu. Dechtiar, and V. Noskov, “Exoelectron emission spectroscopy of silicon nitride thin films,” Appl. Phys. Lett. 80, 2743-2745 (2002).
57. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley Interscience, New York, 1981).
58. H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connel, and R. E. Oleksiak, IEEE IEDM Tech. Dig. (Washington, D.C., 1967).
59. Nonvolatile Semiconductor Memory Technology: A Comprehensive Guide to Understanding and Using NVSM Devices, edited by W. D. Brown and J. E. Brewer, (IEEE Press, New York, 1998), and references therein.
60. S. Horiguchi, and H. Yoshino, “Evaluation of interface potential barrier heights between ultrathin silicon oxides and silicon,” J. Appl. Phys. 58, 1597-1600 (1985).
61. V. A. Gritsenko, E. E. Meerson, and Yu. N. Morokov, “Thermally assisted hole tunneling at the Au-Si3N4 interface and the energy-band diagram of metal-nitride-oxide-semiconductor structures,” Phys. Rev. B. 57, R2081-R2083 (1998).
62. S. Miyazaki, M. Narasaki, A. Suyama, M. Yamaoka, and H. Murakami, “Electronic structure and energy band offsets for ultrathin silicon nitride on Si(100),” Appl. Surf. Sci. 216, 252-257 (2003).
63. M. Modreanu, N. Tomozeiu, P. Cosmin, and M. Gartner, “Optical properties of LPCVD silicon oxynitride,” Thin Solid Films 337, 82-84 (1999).
64. E. Y. Wu, A. Vayshenker, E. Nowak, J. Suñé, R.-P. Vollertsen, W. Lai, and D. Harmon, “Experimental evidence of TBD power-law for voltage dependence of oxide breakdown in ultrathin gate oxides,” IEEE Trans. Electron Devices 49, 2244-2253 (2002).
65. M. Porti, M. Nafría, M. C. Blüm, X. Aymerich, and S. Sadewasser, “Atomic force microscope topographical artifacts after the dielectric breakdown of ultrathin SiO2 films,” Surf. Sci. 532-535, 727-731 (2003).
66. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron Device Lett. 21, 543-545 (2000).
67. P. C. Y. Chen, “Threshold-alterable Si-gate MOS devices,” IEEE Trans. Electron Devices ED-24, 584-586 (1977).
68. E. Suzuki, H. Hiraishi, K. Ishii, and Y. Hayashi, “A low-voltage alterable EEPROM with metal—oxide-nitride—oxide—semiconductor (MONOS) structures,” IEEE Trans. Electron Devices ED-30, 122-128 (1983).
69. M. H. White and J. R. Cricchi, “Characterization of thin-oxide MNOS memory transistors,” IEEE Trans. Electron Devices ED-19, 1280-1288 (1972).
70. X. Zhang and G. M. Sessler, “Charge dynamics in silicon nitride/silicon oxide double layers,” Appl. Phys. Lett. 78, 2757-2759 (2001).
71. M. Naich, G. Rosenman, and Ya. Roizin, “Profiling of deep traps in silicon oxide–nitride–oxide structures,” Thin Solid Films 471, 166-169 (2005).
72. E. Suzuki, Y. Hayashi, K. Ishii, and T. Tsuchiya, “Traps created at the interface between the nitride and the oxide on the nitride by thermal oxidation,” Appl. Phys. Lett. 42, 608-610 (1983).
73. E. Suzuki and Y. Hayashi, “On oxide-nitride interface traps by thermal oxidation of thin nitride in metal-oxide-nitride-oxide-semiconductor memory structures,” IEEE Trans. Electron Devices ED-33, 214-217 (1986).
74. A. P. Aganin, V. M. Maslovskii, and A. P. Nagin, “Determination of the parameters of trapping charges in silicon nitride in a MNOS structure with electron injection from a firld emission electrode,” Microelectron. (Sov.) 17, 348-352 (1988).
75. Z. A. Weinberg, K. J. Stein, T. N. Nguyen, and J. Y. Sun, “Ultrathin oxide-nitride-oxide films” Appl. Phys. Lett. 57, 1248-1250 (1990).
76. Y. C. Park, W. B. Jackson, N. M. Johnson, and S. B. Hagstrom, “Spatial profiling of electron traps in silicon nitride thin films,” J. Appl. Phys. 68, 5212-5221 (1990).
77. F. Martin and X. Aymerich, “Characterization of the spatial distribution of traps in Si3N4 by field-assisted discharge of metal-nitride-oxide-semiconductor devices,” Thin Solid Films 221, 147 (1992).
78. V. A. Gritsenko, I. P. Petrenko, S. N. Svitasheva, and H. Wong, “Excess silicon at the Si3N4/SiO2 interface,” Appl. Phys. Lett. 72, 462-464 (1998).
79. V. A. Gritsenko, S. N. Svitasheva, I. P. Petrenko, Yu. N. Novikov, Yu. N. Morokov, H. Wong, R. W. M. Kwok, and R. W. M. Chan, “Characterization of the silicon nitride-thermal oxide interface in oxide-nitride-oxide structures by ELS, XPS, ellipsometry, and numerical simulation,” Microelectron. Reliab. 38, 745-751 (1998).
80. V. A. Gritsenko, H. Wong, J. B. Xu, R. M. Kwok, I. P. Petrenko, A. B. Zaitsev, Yu. N. Morokov, and Yu. N. Novikov, “Excess silicon at the silicon nitride/thermal oxide interface in oxide–nitride–oxide structures,” J. Appl. Phys. 86, 3234-3240 (1999).
81. Y. Ma, T. Yasuda, and G. Lucovsky, “Fixed and trapped charges at oxide-nitride-oxide heterostructure interfaces formed by remote plasma enhanced chemical vapor deposition” J. Vac. Sci. Technol. B 11, 1533-1540 (1993).
82. J. H. Kim and J. B. Choi, “Empirical model of data retention degradation in stacked-gate flash EEPROM cells with new interpoly dielectric of an Oxide–Nitride–Oxide–Nitride (ONON) layer,” Solid-State Electron. 49, 795-801 (2005).
83. Y. Yang and M. H. White, “Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures,” Solid-State Electron. 44, 949-958 (2000).
84. E. Lusky, Y. Shacham-Diamand, A. Shappir, I. Bloom, and B. Eitan, “Traps spectroscopy of the Si3Ni4 layer using localized charge-trapping nonvolatile memory device,” Appl. Phys. Lett. 85, 669-671 (2004).
85. S.-D. Tzeng, C.-L. Wu, Y.-C. You, T. T. Chen, S. Gwo, and H. Tokumoto, “Charge imaging and manipulation using carbon nanotube probes,” Appl. Phys. Lett. 81, 5042-5044 (2002).
86. F. S.-S. Chien, J.-W. Chang, S.-W. Lin, Y. -C. Chou, T. T. Chen, S. Gwo, T.-S. Chao, and W.-F. Hsieh, “Nanometer-scale conversion of Si3N4 to SiOx,” Appl. Phys. Lett. 76, 360-362 (2000).
87. B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Devices ED-27, 606-608 (1980).
88. C. J. Kang, G. H. Buh, S. Lee, C. K. Kim, K. M. Mang, C. Im, and Y. Kuk, “Charge trap dynamics in a SiO2 layer on Si by scanning capacitance microscopy,” Appl. Phys. Lett. 74, 1815-1817 (1999).
89. R. E. Paulsen, R. R. Siergiej, M. L. French, and M. H. White, “Observation of near-interface oxide traps with the charge-pumping technique,” IEEE Electron Device Lett. 13, 627-629 (1992).
90. S. Hudlet, M. S. Jean, B. Roulet, J. Berger, and C. Guthmann, “Electrostatic forces between metallic tip and semiconductor surfaces,” J. Appl. Phys. 77, 3308-3314 (1995).
91. G. Lubarsky, R. Shikler, N. Ashkenasy, and Y. Rosenwaks, “Quantitative evaluation of local charge trapping in dielectric stacked gate structures using Kelvin probe force microscopy,” J. Vac. Sci. Technol. B 20, 1914-1917 (2002).
92. P. J. McWhorter, S. L. Miller, and T. A. Dellin, “Modeling the memory retention characteristics of silicon-nitride-silicon nonvolatile transistor in a varying thermal environment,” J. Appl. Phys. 68, 1902-1909 (1990).
93. H. Tanaka, “Limitation current in Si3N4/SiO2 stacked dielectric films,” Appl. Surf. Sci. 147, 222-227 (1999).
94. A. Schenk and G. Heiser, “Modeling and simulation of tunneling through ultra-thin gate dielectrics,” J. Appl. Phys. 81, 7900-7908 (1997).
95. A. Haque and K. Alam, “Accurate modeling of direct tunneling hole current in p-metal–oxide–semiconductor devices,” Appl. Phys. Lett. 81, 667-669 (2002).
96. W. Shockley and W. T. Read, “Statistics of the recombinations of holes and electrons,” Phys. Rev. 87, 835-842 (1952).
97. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
98. T. H. Kim, J. S. Sim, J. D. Lee, H. C. Shin, and B.-G. Park, “Charge decay characteristics of silicon-oxide-nitride-oxide-silicon structure at elevated temperatures and extraction of the nitride trap density distribution,” Appl. Phys. Lett. 85, 660-662 (2004).
99. V. J. Kapoor and S. B. Bibyk, The Physics of MOS Insulator, edited by G. Lucovsky, S. T. Pantelides and F. L. Galeener (Pergamon, New York, 1980).
100. M. Naich, G. Rosenman, Ya. Roizin, and M. Molotskii, “Exoelectron emission studies of trap spectrum in ultrathin amorphous Si3N4 films,” Solid-State Electron. 48, 477-482 (2004).
101. V. A. Gritsenko, Silicon Nitride in Electronics, edited by A. V. Rzhanov (Elsevier, New York, 1988), and references therein.
102. N. F. Mott and E. A. Davis, Electron Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979).
103. V. A. Gritsenko, E. E. Meerson, I. V. Travkov, and Yu. V. Goltvyanskii, “Nonstationary transport of electrons and holes in the depolarized mode of MNOS devices: An experiment and numerical modeling,” Microelectron. (Sov.) 16, 42-50 (1987).
104. F. L. Hampton and J. R. Cricchi, “Steady-state electron and hole space charge distribution in LPCVD silicon nitride films,” Appl. Phys. Lett. 35, 802-804 (1979), and references therein.
105. E. Suzuki and Y. Hayashi, “Carrier concentration and trapping in metal-nitride-semiconductor structures” J. Appl. Phys. 53, 8880-8885 (1982).
106. F. Martin and X. Aymerich, “Performance limits of deep submicron N- and P-channel MOS transistors,” Microelectron. J. 22, 5-17 (1991).
107. C. M. Niemeyer, “Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science,” Angew. Chem. Int. Ed. 40, 4128-4158 (2001).
108. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characteristization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
109. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem. 1, 18-52 (2000).
110. The Chemistyr of Nanomaterials: Synthesis, Properties and Applications in 2 Volumes, Volume 1 and Volume 2, edited by C. N. R. Rao, A. Müller, and A. K. Cheetham (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
111. Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles, edited by Frank Caruso, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004).
112. Handbook of Nanostructured Materials and Nanotechnology, Volume 3: Electrical Properties, edited by H. S. Nalwa (Academic Press, 2000).
113. Jin Z. Zhang, Zhong-Lin Wang, Jun Liu, Shaowei Chen, and Gang-yu Liu, Self-Assembled Nanostructures (Kluwer Academic, New York, 2003).
114. Quantum Dots and Nanowires, edited by S. Bandyopadhyay and H. S. Nalwa (American Scientific Publishers, 2003).
115. G. Schmid and L. F. Chi, “Metal clusters and colloids,” Adv. Mater. 10, 515-526 (1998).
116. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, “Colloidal nanocrystal shape and size control: The case of cobalt,” Science 291, 2115-2117 (2001).
117. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176-2179 (2002).
118. J. Park, K, An, Y. Hwang, J-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, “Ultra-large-scale syntheses of monodisperse nanocrystals,” Nature Mater. 3, 891-895 (2004).
119. T. Sato, D. Brown and B. F. G. Johnson, “Nucleation and growth of nano-gold colloidal lattices,” Chem. Commun. 1997, 1007-1008 (1997).
120. T. Fried, G. Shemer, and G. Markovich, “Ordered two-dimensional arrays of ferrite nanoparticles,” Adv. Mater. 13, 1158-1161 (2001).
121. Handbook of Surfaces and Interfaces of Materials, Volume 3: Nanostructured Materials, Micells, and Colloids, edited by H. S. Nalwa (Academic Press, 2001).
122. M. Giersig and P. Mulvaney, “Preparation of ordered colloid monolayers by electrophoretic deposition,” Langmuir 9, 3408-3413 (1993).
123. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, “Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters,” Science 273, 1690-1693 (1996).
124. N. A. Kotov, I. Dekany, and J. H. Fendler, “Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films,” J. Phys. Chem. 99, 13065-13069 (1995).
125. K. Ariga, Y. Lvov, M. Onda, I. Ichinose, and T. Kunitake, “Alternately assembled ultrathin film of silica nanoparticles and linear polycations,” Chem. Lett. 26, 125-126 (1997).
126. F. X. Redl, K.-S. Cho, C. B. Murray, and S. O’Brien,” Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots,” Nature 423, 968-971 (2003).
127. P. J. Thomas, G. U. Kulkarni, and C. N. R. Rao,” Mesoscopic assembly of magnetic Pd-Ni nanocrystals into ordered arrays by using alkane thiols,” J. Nanosci. Nanotechnol. 1, 267-270 (2001).
128. S. Huang, H. Sakaue, S. Shingubara, and T. Takahagi, “Self-organization of a two-dimensional array of gold nanodots encapsulated by alkanethiol,” Jpn. J. Appl. Phys. 37, 7198-7201 (1998).
129. G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,” Science 295, 2418-2421 (2002).
130. X. M. Lin, H. M. Jaeger, C. M. Sorensen, and K. J. Klabunde, ” Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates,” J. Phys. Chem. B 105, 3353-3357 (2001).
131. S. Stoeva, K. J. Klabunde, C.M. Sorensen, and I. Dragieva, “Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures,” J. Am Chem. Soc. 124, 2305-2311 (2002).
132. R. C. Bailey, K. J. Stevenson, and J. T. Hupp, “Assembly of micropatterned colloidal gold thin films via microtransfer molding and electrophoretic deposition,” Adv. Mater. 12, 1930-1934 (2000).
133. M. Holgado, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
134. M. Gao, J. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, and J. Feldmann, “Lateral patterning of CdTe nanocrystal films by the electric field directed layer-by-layer assembly method,” Langmuir 18, 4098-4102 (2002).
135. P. Mesquida and A. Stemmer, “Maskless nanofabrication using the electrostatic attachment of gold particles to electrically patterned surfaces,” Microelectron. Eng. 61-62, 671-674 (2002).
136. P. Mesquida and A. Stemmer, “Attaching silica nanoparticles from suspension onto surface charge patterns generated by a conductive atomic force microscope tip,” Adv. Mater. 13, 1395-1398 (2001).
137. H. Fudouzi, M. Kobayashi, and N. Shinya, “Assembling 100nm scale particles by an electrostatic potential field,” J. Nanopart. Res. 3, 193-200 (2001).
138. Torsten Muller, A. Gerardino, T. Schnelle, S. G Shirley, F. Bordoni, G. De Gasperis, R Leoni, and G. Fuhr, “Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces,” J. Phys. D: Appl. Phys. 29, 340-349 (1996).
139. H. A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978).
140. T. B. Jones, Electromechanics of Particles (Cambridge University Press, Cambridge: New York, 1995).
141. J. Tien, A. Terfort, and G. M. Whitesides, “Microfabrication through electrostatic self-assembly,” Langmuir 13, 5349-5355 (1997).
142. J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned colloidal deposition controlled by electrostatic and capillary forces,” Phys. Rev. Lett. 84, 2997-3000 (2000).
143. H. O. Jacobs and G. M. Whitesides, “Submicrometer patterning of charge in thin-film electrets,” Science 291, 1763-1766 (2001).
144. H. O. Jacobs, S. A. Campbell, and M. G. Steward, “Approaching nanoxerography: The use of electrostatic forces to position nanoparticles with 100 nm scale resolution,” Adv. Mater. 14, 1553-1557 (2002).
145. C. R. Barry, M. G. Steward, N. Z. Lwin, and H. O. Jacobs, “Printing nanoparticles from the liquid and gas phases using nanoxerography,” Nanotechnology 14, 1057-1063 (2003).
146. C. R. Barry, N. Z. Lwin, W. Zheng, and H. O. Jacobs, “Printing nanoparticle building blocks from the gas phase using nanoxerography,” Appl. Phys. Lett. 83, 5527-5529 (2003).
147. C. R. Barry, J. Gu, and H. O. Jacobs, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Lett. 5, 2078-2084 (2005).
148. M. Kang, H. Kim, B. Han, J. Suh, J. Park, and M. Choi, “Nanoparticle pattern deposition from gas phase onto charged flat surface,” Microelectron. Eng. 71 229-236 (2004).
149. J. Aizenberg, A. J. Black, and G. M. Whitesides, “Control of crystal nucleation by patterned self-assembled monolayers” Nature 398, 495-498 (1999).
150. L. M. Demers and C. A. Mirkin, “Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays,” Angew. Chem. Int. Ed. 40, 3069-3071 (2001).
151. L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S.-W. Chung, and C. A. Mirkin, “Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography,” Science 296, 1836-1838 (2002).
152. X. G. Liu, L. Fu, S. H. Hong, V. P. Dravid, and C. A. Mirkin, “Arrays of magnetic nanoparticles patterned via dip-pen nanolithography,” Adv. Mater. 14, 231-234 (2002).
153. D. S. Ginger, H. Zhang, and C. A. Mirkin, “The evolution of dip-pen nanolithography,” Angew. Chem. Int. Ed. 43, 30-45 (2004).
154. H. Sugimura and N. Nakagiri, “Degradation of a trimethylsilyl monolayer on silicon substrates induced by scanning probe anodization,” Langmuir 11, 3623-3625 (1995).
155. H. Sugimura and N. Nakagiri, “Nanoscopic surface architecture based on scanning probe electrochemistry and molecular self-assembly,” J. Am. Chem. Soc. 119, 9226-9229 (1997).
156. R. Maoz, E. Frydman, S. R. Cohen, and J. Sagiv, “Constructive nanolithography: Inert monolayers as patternable templates for in-situ nanofabrication of metal-semiconductor-srganic surface structures□A generic approach,” Adv. Mater. 12, 725-731 (2000).
157. S. Liu, R. Maoz, G. Schmid, and J. Sagiv, “Template guided self-assembly of [Au55] clusters on nanolithographically defined monolayer patterns,” Nano Lett. 2, 1055-1060 (2002).
158. S. Liu, R. Maoz, and J. Sagiv, “Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality,” Nano Lett. 4, 845-851 (2004).
159. S. C. Minne, G. Yaralioglu, S. R. Manalis, J. D. Adams, J. Zesch, A. Atalar, and C. F. Quate, “Automated parallel high-speed atomic force microscopy,” Appl. Phys. Lett. 72, 2340-2342 (1998).
160. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, and G. K. Binnig, “The "millipede"-nanotechnology entering data storage,” IEEE Trans. on Nanotechnology 1, 39-55 (2002).
161. D. Bullen, S.-W. Chung, X. Wang, J. Zou, C. A. Mirkin, and C. Liu, “Parallel dip-pen nanolithography with arrays of individually addressable cantilevers,” Appl. Phys. Lett. 84, 789-791 (2005).
162. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert and M. H. Devoret (Plenum Press, New York, 1992).
163. T. Sato, H. Ahmed, D. Brown, and B. F. G. Johnson, “Single electron transistor using a molecularly linked gold colloidal particle chain,” J. Appl. Phys. 82, 696-701 (1997).
164. U. Simon, “Charge transport in nanoparticle arrangements,” Adv. Mater. 10, 1487-1492 (1998).
165. S. Huang, G. Tsutsui, H. Sakaue, S. Shingubara, and T. Takahagi, “Electrical properties of self-organized nanostructures of alkanethiol-encapsulated gold particles,” J. Vac. Sci. Technol. B 18, 2653-2657 (2000).
166. C. T. Black, C. B. Murray, R. L. Sandstrom, and Shouheng Sun, “Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices,” Science 290, 1131-1134 (2000).
167. L. Sheeney-Haj-Ichia, S. Pogorelova, and Y. Gofer, I. Willner, “Enhanced photoelectrochemistry in CdS/Au nanoparticle bilayers,” Adv. Funct. Mater. 14, 416 (2004).
168. K. Yamada, K. Hoshino, K. Matsumoto and I. Shimoyama, “Electro-static trapping and deposition of nanoparticles in a submicron narrow gap for a lateral-electrode LED,” Proceedings of IEEE MEMS, 49-52 (2004). (http://www.leopard.t.u-tokyo.ac.jp/PDF/yamada1.pdf)
169. S. Y. Chou, P. R. Krauss, and L. Kong, “Nanolithographically defined magnetic structures and quantum magnetic disk (invited),” J. Appl. Phys. 79, 6101-6106 (1996).
170. Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, and J.R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R. 47, 1 (2004).
171. D. F. Liu, Y. J. Xiang, Z. X. Zhang, J. X. Wang, Y. Gao, L. Song, L. F. Liu, X. Y. Dou, X. W. Zhao, S. D. Luo, C. Y. Wang, W. Y. Zhou, G. Wang, and S. S. Xie, “Growth of ZnO hexagonal nanoprisms,” Nanotechnology 16, 2665-2669 (2005).
172. C.-Y. Tasi, T.-L. Chang, R. Uppala, C.-C. Chen, F.-H. Ko, and P.-H. Chen, “Electrical detection of protein using gold nanoparticles and nanogap electrodes,” Jpn. J. Appl. Phys. 44, 5711 (2005).
173. H. Fudouzi, M. Kobayashi, and N. Shinya, “Site-controlled deposition of microsized particles using an electrostatic assembly,” Adv. Mater. 14, 1649-1652 (2002).
174. Electrets, Vol. 1, 3rd Ed., edited by G. M. Sessler, Laplacian Press, and Morgan Hill (California, 1998).
175. R. K. Iler, “Multilayers of colloidal particles,” J. Coll. Interf. Sci. 21, 569-594 (1966).
176. D. M. Pai and B. E. Springett, “Physics of electrophotography,” Rev. Mod. Phys. 65, 163-211 (1993).
177. T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, and L. Samuelson, “Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase,” Appl. Phys. Lett. 78, 3708-3710 (2001).
178. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc., Chem. Commun. 7, 801-802 (1994).
179. W. Cheng and E. Wang, “Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: A wholly electrostatic interaction,” J. Phys. Chem. B 108, 24-26 (2004).
180. Evident Technologies Inc., Website: www.evidenttech.com.
181. H. A. Biebuyck, C. D. Bain, and G. M. Whitesides, “Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols,” Langmuir 10, 1825 (1994).
182. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober,K. F. Jensen, and M. G. Bawendi, “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” J. Phys. Chem. B 101, 9463-9475 (1997).
183. L. K. Koopal and M. J. Avena, “A simple model for adsorption kinetics at charged solid-liquid interfaces,” Colloids and Surfaces A: Physicochem. Eng. Aspects 192, 93-107 (2001).
184. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Colloids and Surfaces A: Physicochem. Eng. Aspects 214, 23-36 (2003).
185. C. D. Keating, M. D. Musick, M. H. Keefe, and M. J. Natan, “Kinetics and thermodynamics of Au colloid monolayer self-assembly” J. Chem. Edu. 76, 949-955 (1999).
186. J. C. Crocker and D. G. Grier, “When like charges attract: The effects of geometrical confinement on long-range colloidal interactions,” Phys. Rev. Lett. 77, 1897-1900 (1996).
187. Y. Han and D. G. Grier, “Confinement-induced colloidal attractions in equilibrium,” Phys. Rev. Lett. 91, 038302 (2003).