研究生: |
林修民 Lin, Hsiu-Min |
---|---|
論文名稱: |
利用高速擺錘衝擊與摔落測試評估單邊與雙邊接合銲料接面之界面反應、元素分佈、晶向生長結構與 機械性質可靠度 Evaluation of Interfacial Reaction, Elemental Distribution, Grain Orientation and Mechanical Reliability via High Speed Impact and Drop Vehicle with the Systematic Attachment and Assembly Solder Joints |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
劉國全
吳子嘉 石東益 李建勳 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 127 |
中文關鍵詞: | 高速衝擊試驗 、摔落測試 、元素再分佈 、破斷面統計 、裂縫起始與延伸 、晶向生長與結構 |
外文關鍵詞: | High speed impact test, Drop test, Elemental redistribution, Statistic of fracture surface, Cracks initiation and propagation, Grain orientation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由高速擺錘衝擊與摔落測試等不同的機械性質評估,嘗試鑑別銲料接面之機械性質與可靠度準則,利用一系列具不同鈀含量之單邊與雙邊銲料接面試片進行,不同的機械性質表現可利用統計歸納的方式進行比較。在高速衝擊測試下,含0.06 μm鈀層厚度的SAC305/ENEPIG銲料接面表現較佳,歸因於僅單一Cu6Sn5相生成在界面當中。然而,在利用摔落測試比較測量不同的雙邊接合試片時,含0.1 μm鈀層厚度的ENEPIG/SAC305/immersion Sn銲料接面呈現較佳的機械性質表現,可歸因於其較薄且層狀結構之介金屬化合物生長在界面。可預期的是,透過比較單邊及雙邊接合試片,並分別利用高速衝擊與摔落機械測試方式,可嘗試建立機械性質可靠度測試之準則。此外,在單邊與雙邊接合試片中,亦對ENEPIG表面處理的最理想鈀層厚度沉積進行驗證與確認。
由於機械應力累積的關係,經由摔落測試後的銲料接面大部分的失效區域都會靠近PCB(銅)板端的界面。其中裂縫與鈀添加後微量元素的分佈情形之關聯性,可藉由電子微探儀(FE-EPMA)的元素分佈圖進行確認。當ENIG與ENEPIG的雙邊接面試片在摔落測試下,裂縫會朝向最弱的界面進行延伸,即在Cu6Sn5和Cu3Sn兩相之間。介金屬化合物的形貌與厚度會主導裂縫的初始位置與持續延伸的狀況。在經過熱處理後,ENEPIG (Pd 0.1)/SAC305/immersion Sn的雙邊接合銲料接面呈現出層狀與較薄的介金屬化合物生長,使得裂縫延伸至較弱的界面有較長的距離,因此,其摔落測試呈現較佳的機械強度表現。
另外,銲錫接點中的晶粒結構與方向性是目前相當重要的可靠度議題,因此本研究利用背向電子繞射儀(EBSD)觀察介金屬化合物與銲錫,其晶粒結構的變化和晶粒的生長方向性將是研究的重點。在本研究中發現,介金屬化合物在ENEPIG(鎳)端及浸錫(銅)端的生長方式及優選方向有所不同,此一差異可能肇因於雙邊接合試片中兩端不同元素的交互擴散影響所至。為證實熱與機械應力是否會影響銲錫的晶粒結構與優選方向,分別觀察ENIG與ENEPIG的雙邊接面試片中經過熱處理與摔落測試後之銲錫。結果得知,鈀元素會穩定銲錫的晶粒結構與方向,在承受熱與機械應力的衝擊下,抑制減緩晶粒細化、再結晶、與其變形。特別在剛完成迴焊過程後,銲錫含鈀的晶粒形成單晶的晶粒結構,且銲錫之c軸大多呈現平行於基板的狀態。最後,針對雙邊接合試片中影響介金屬化合物生長方向的原因進行探討,並與所觀察到之晶粒結構與方向差異相關連,提出可能的反應機制。
The criteria of mechanical reliability in solder joints can be identified and described by comparative evaluation via drop test and high speed pendulum impact test. Systematic samples of assembly and attachment joints with various Pd additions were employed and investigated in this study. The statistical values of mechanical performances were calculated and compared. Better high speed impact performance of SAC305/ENEPIG attachment joints with 0.06 μm Pd layers was confirmed owing to the single Cu6Sn5 phase growth. However, the comparative measurement of the better performance on drop testing exhibited in ENEPIG/SAC305/immersion Sn assembly joints with 0.1 μm Pd layers deposit resulted from the thinner and layer-type IMC growth. It is expected that through comparison between impact and drop test in mechanical reliability, a criterion of joints reliability can be established. Besides, the optimal Pd layer deposit for the ENEPIG surface finish in the attachment and assembly solder joints was demonstrated and confirmed.
Most failure regions existed at interface near PCB (Cu) side during mechanical drop testing due to the stress accumulation. The correlation between the cracks generation and Pd addition was established on the basis of the elemental X-ray color mapping via Field-Emission Electron Probe Microanalyzer (FE-EPMA). In the ENIG and ENEPIG assembly joints, cracks propagation might travel toward the weakest interface, which located at interface between Cu6Sn5 and Cu3Sn phases during drop testing. The IMC morphology and thickness might dominate the cracks initiation and propagation. Joints with layer-type and thinner IMC growth after thermal treatment revealed the longer crack propagation in ENEPIG (Pd 0.1)/SAC305/immersion Sn assembly joints. The better drop performance were confirmed in the ENEPIG (Pd 0.1) assembly joints.
Besides, the crystallographic orientation of IMCs and β-Sn in the ENIG and ENEPIG assembly joints was investigated. With the aid of EBSD analysis, various grain structures and preferred growth orientation of IMCs and β-Sn were observed. The distinctive growth behaviors of intermetallic compound on the ENEPIG UBM and immersion Sn substrates were associated with the cross-interaction of minor Cu, Ni and Pd elements. To verify that the thermal and mechanical influence would affect the β-Sn grain variation, the ENIG and ENEPIG assembly joints were employed. It is noted that Pd elements might stabilize the grain orientation of β-Sn, inhibiting the grain refinements, recrystallization and deformation during the thermal and mechanical stressing impact. Especially the single β-Sn grain texture with parallel c-axis to the substrate at as-reflowed stage was probed and demonstrated. Finally, the correlation between microstructure variation and grain orientation was investigated and discussed. The possible mechanism was also proposed.
1. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
2. J.H. Lau, “Flip Chip Technologies”, McGraw-Hill, New York, 1996, pp. 26-30.
3. G.R. Blackwell, “The Electronic Packaging Handbook”, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
4. D.G. Kim, J.W. Kim, J.G. Lee, H. Mori, D.J. Quesnal, and S.B. Jung, “Solid state interfacial reaction and joint strength of Sn–37Pb solder with Ni–P under bump metallization in flip chip application”, J. Alloys Compd. 395 (2005) 80.
5. C.H. Wang, H.T. Shen, and W.H. Lai, “Effective suppression of electromigration-induced Cu dissolution by using Ag as a barrier layer in lead-free solder joints”, J. Alloys Compd. 564 (2013) 35.
6. C.A. Palesko and E.J. Vardaman, “Cost Comparison for Flip Chip, Gold Wire Bond, and Copper Wire Bond Packaging”, Electronic Components and Technology Conference (2010) 10.
7. M. Umemoto, K. Tanida, Y. Nemoto, M. Hoshino, K. Kojima, Y. Shirai, and K. Takahashi, ‘‘High Performance Vertical Interconnection for High-Density 3D Chip Stacking Package’’, Proceedings of the 54th Electronic Components and Technology Conference, June 1–4, 2004, pp. 616-623.
8. P. Mclelln, The semiconductor wiki project, (2013)
9. T. Goodman, P. Elenius, T. Arizona, J. Marcin, C. Richert, and F. Calif, ”Evaluating Wafer-Level Solder Reflow Options to Maximize Yield”, Chip Scale review, (2003)
10. M. Maxfield, “The State of the Art in 3D IC Technologies”, EE Times, (2013)
11. Vardaman, “Surface Mount Technology Recent Japanese Developments”, IEEE Press, New York, 1993, Part 4.
12. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles (Boston: PWS Publishing Company, 1994)
13. B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878.
14. M. McCormack, S. Jin, G.W. Kammlott, and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63 (1993) 15.
15. C.S. Chang, A. Oscilowski, and R.C. Bracken, “Future challenges in electronics packaging”, IEEE Circuits Devices Mag. 14 (1998) 45.
16. D.R. Frear, J.W. Jang, J.K. Lin, and C. Zang, “Pb-free solders for flip-chip interconnects”, JOM, 53 (2001) 28.
17. K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci., 5 (2001) 55.
18. K. Zeng and K.N. Tu, “Pb-free solders joints in electronics packaging technology.” Mater. Sci. Eng. R 38 (2002) 55.
19. H. Ma and J.C. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging”, J. Mater. Sci. 44 (2009) 94 1141.
20. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra, and O. Unal, “Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder Alloys for Improved Microstructural Stability”, J. Electron. Mater 30 (2001) 1050.
21. W. Liu and N.C. Lee, “The Effects of Additives to SnAgCu Alloys on Microstructure and Drop Impact Reliability of Solder Joints”, JOM (2007) 26.
22. R.S. Pandher, B.G. Lewis, R. Vangaveti , and B. Singh, “Drop Shock Reliability of Lead-Free Alloys - Effect of Micro-Additives”, Electronic Components and Technology Conference 2007 Proceedings, p.669.
23. K.S. Kim, S.H. Huh, and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng., A 333 (2002) 106.
24. I.E. Anderson, “Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications”, J Mater Sci: Mater Electron 18 (2007) 55.
25. H.W. Miao and J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Mater. Chem. Phys. 71 (2001) 255.
26. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan, and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17 (2002) 1612.
27. Y.H. Lee and H.T. Lee, “Shear strength and interfacial microstructure of Sn-Ag-xNi/Cu single shear lap solder joints”, Mater. Sci. Eng. A 444, (2007) 75.
28. F. Guo, S. Choi, K.N. Subramanian, T.R. Bieler, J.P. Lucas, A. Achari, and M. Paruchuri, “Evaluation of Creep Behavior of Near Eutectic Sn-Ag Solders Containing Small Amount of Alloy Additions”, Mater. Sci. Eng. A 351, (2003) 190.
29. J.Y. Tsai, Y.C. Hu, C.M. Tsai, and C.R. Kao, “A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni”, J. Electron. Mater., 32 (2003) 1203.
30. J.W. Yoon, C.B. Lee, and S.B. Jung “Growth of an Intermetallic Compound Layer with Sn-3.5Ag-5Bi on Cu and Ni-P/Cu during Aging Treatment”, J. Electron. Mater., 32 (2003) 1195.
31. I.E. Anderson and J.L. Harringa, “Elevated temperature aging of solder joints based on Sn-Ag-Cu: Effects on joint microstructure and shear strength”, J. Electron. Mater., 33 (2004) 1485.
32. H.T. Lee, M.H. Chen, H.M. Jao, and C.J. Hsu, “Effect of adding Sb on microstructure and adhesive strength of Sn–Ag solder joint”, J. Electron. Mater., 33 (2004) 1048.
33. C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, ”Properties of lead-free solder alloys with rare earth element additions”, Mater. Sci. Eng. R, 44 (2004) 1.
34. A.A. El-Daly, A.M. Abdel-Daiem, A.N. Abdel-Rahman, and S.M. Mohammed, “Effect of Zn-addition and Structural Transformation on the Creep Behaviour of Pb-10 wt.% Sn Alloy”, Mater. Chem. Phys. 85, 163 (2004).
35. C.P. Huang, C. Chen, C.Y. Liu, S.S. Lin, and K.H. Chen, “Metallurgical reactions of Sn-3.5Ag solder with various thicknesses of electroplated Ni/Cu under bump metallization”, J. Mater. Res., 20 (2005) 2772.
36. S.K. Kang, D. Leonard, D.Y. Shih, L. Gignac, D.W. Henderson, S. Cho, and J. Yu, “Interfacial reactions of Sn-Ag-Cu solders modified by minor Zn alloying addition”, J. Electron. Mater., 35 (2006) 479.
37. S.C. Yang, C.E. Ho, C.W. Chang, and C.R. Kao, “Strong Zn concentration effect on the soldering reactions between Sn-based solders and Cu”, J. Mater. Res., 21 (2006) 2436.
38. I.E. Anderson and J.L. Harringa, “Suppression of void coalescence in thermal aging of tin-silver-copper-X solder joints”, J. Electron. Mater., 35 (2006) 94.
39. F. Gao, T. Takemoto, H. Nishikawa, and A. Komatsu, “Microstructure and mechanical properties evolution of intermetallics between Cu and Sn-3.5Ag solder doped by Ni-Co additives”, J. Electron. Mater., 35 (2006) 905.
40. H. Nishikawa, J.Y. Piao, and T. Takemoto, “Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate”, J. Electron. Mater., 35 (2006) 1127.
41. Y.K. Jee, Y.H. Ko, and J. Yu, “Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad”, J. Mater. Res., 22 (2007) 1879.
42. A. Fawzy, “Effect of Zn addition, strain rate and deformation temperature on the tensile properties of Sn–3.3 wt.% Ag solder alloy”, Mater. Charact., 58 (2007) 323.
43. M. He and V.L. Acoff, “Effect of Bi on the Interfacial Reaction between Sn-3.7Ag-xBi Solders and Cu”, J. Electron. Mater., 37 (2008) 288.
44. F. Gao, H. Nishikawa, and T. Takemoto, “Additive Effect of Kirkendall Void Formation in Sn-3.5Ag Solder Joints on Common Substrates”, J. Electron. Mater., 37 (2008) 45.
45. Y.W. Wang, Y.W. Lin, C.T. Tu, and C.R. Kao, “Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu”, J. Alloy. Compd. 478 (2009) 127.
46. K.J. Wang and J.G. Duh, “Shear and Pull Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Under bump Metallization During Aging”, J. Electron. Mater. 38 (2009) 2534.
47. K.J. Wang, J.G. Duh, B. Sykes, and D. Schade, “Impact Testing of Sn-3.0Ag-0.5Cu Solder with Ti/Ni(V)/Cu Under Bump Metallization After Aging at 150°C”, J. Electron. Mater. 39 (2010) 2558.
48. J.W. Yoon, B.I. Noh, and S.B. Jung, “Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint”, J. Electron. Mater. 40 (2011) 1950.
49. A.A. El-Daly, A.E. Hammad, A. Fawzy, and D.A. Nasrallh, “Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions”, Materials and Design., 43 (2012) 40.
50. C.Y. Yu and J.G. Duh, “Suppressing the growth of Cu-Sn intermetallic compounds in Ni/Sn-Ag-Cu/Cu-Zn solder joints during thermal aging”, Intermetallics 26 (2012) 11.
51. W.Y. Chen, C.Y. Yu, and J.G. Duh, “Suppressing the growth of interfacial Cu-Sn intermetallic compounds in the Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joint during thermal aging”, J. Mater. Sci. 47 (2012) 4012.
52. K. Zeng, M. Pierce, H. Miyazaki, and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective” J. Electron. Mater. 41 (2012) 253.
53. C.F. Tseng, T.K. Lee, G. Ramakrishna, K.C. Liu, and J.G. Duh, “Suppressing Ni3Sn4 formation in the Sn-Ag-Cu solder joints with Ni-P/Pd/Au surface finish”, Mater. Lett. 65 (2011) 3216.
54. I.T. Wang, J.G. Duh, C.Y. Cheng, and J. Wang, “Interfacial reaction and elemental redistribution in Sn3.0Ag0.5Cu–xPd/immersion Au/electroless Ni solder joints after aging”, Mater. Sci. Eng. B 177 (2012) 278.
55. C.F. Tseng and J.G. Duh, “Correlation between microstructure evolution and mechanical strength in the Sn–3.0Ag–0.5Cu/ENEPIG solder joint”, Mater Sci Eng A-Struct Mater Prop Microstruct Process 580 (2013) 169.
56. C.F. Tseng and J.G. Duh, “The influence of Pd on growth behavior of a quaternary (Cu,Ni,Pd)6Sn5 compound in Sn–3.0Ag–0.5Cu/Au/Pd/Ni–P solder joint during a liquid state reaction”, J. Mater. Sci. 48 (2013) 857.
57. H.M. Lin and J.G. Duh, “Interfacial reaction between Sn–3.0Ag–0.5Cu liquid solder and Ni–xZn novel UBM layers”, Surf. Coat. Tech 206 (2011) 1941.
58. H.M. Lin and J.G. Duh, “Development of electroplated Ni–xZn films for under bump metallization application”, Surf. Coat. Tech 237 (2013) 445.
59. T.K. Lee, B. Zhou, T.R. Bieler, C.F. Tseng, and J.G. Duh, “The Role of Pd in Sn-Ag-Cu Solder Interconnect Mechanical Shock Performance”, J. Electron. Mater. 42 (2013) 215.
60. JESD22-B111. “Board level drop test method of components for handheld electronic products”, JEDEC Solid State Technology Association, July 2003.
61. W. Peng and M.E. Marques “Effect of Thermal Aging on Drop Performance of Chip Scale Packages with SnAgCu Solder Joints on Cu Pads”, J. Electron. Mater. 36 (2007) 1679.
62. S.H. Park, S.K. Kim, and Y.H. Kim, “Interface analysis of embedded chip resistor device package and its effect on drop shock reliability”, J Nanosci Nanotechnol 12 (2012) 3186.
63. F. Yang and S.A. Meguid, “Efficient multi-level modeling technique for determining effective board drop reliability of PCB assembly”, Microelectron Reliab 53 (2013) 975.
64. S. Belhenini, A. Tougui, A. Bouchou, and F. Dosseul, “3D finite element modeling of 3D C2W (chip to wafer) drop test reliability: Optimization of internal architecture and materials”, Microelectron Reliab 54 (2014) 13.
65. J.H. Lau, “Ball grid array technology”, Mcgraw-Hill, New York, 1995.
66. G.R. Blackwell, “The Electronic Packaging Handbook”, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
67. R.R. Tummala and E. J. Rymaszewski, “Microelectronics packaging handbook, 2nd edition”, Van Nostrand Reihold, New York, 1997.
68. L.F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
69. P.A. Totta and R.P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13 (1969) 226.
70. B. Banijamali, S. Ramalingam, H. Liu, and M. Kim, “Outstanding and innovative reliability study of 3D TSV interposer and fine-pitch solder micro-bumps”, Proc. of IEEE/ECTC, May 2012, pp. 309-314.
71. J.H. Lau, “The future of interposers for semiconductor IC packaging”, Chip Scale Review Magazine, Vol. 18, No. 1, Jan./Feb. 2014, pp. 32-36.
72. http://press.xilinx.com/2013-10-20-Xilinx-and-TSMC-Reach-Volume-Production-on-all-28nm-CoWoS-based-All-Programmable-3D-IC-Families.
73. http://press.xilinx.com/2013-11-11-Xilinx-Ships-Industrys-First-20nm-All-Programmable-Product.
74. C.S. Selvanayagam, J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, and T.C. Chai, “Nonlinear thermal stress/strain analysis of copper filled TSV (through-silicon via) and their flip-chip microbumps”, Proc. of IEEE/ECTC, May 2008, pp. 1073-1081.
75. X. Zhang, T.C. Chai, J. H. Lau, C.S. Selvanayagam, K. Biswas, S. Liu, D. Pinjala, G.Y. Tang, Y.Y. Ong, S.R. Vempati, E. Wai, H.Y. Li, E.B. Liao, N. Ranganathan, V. Kripesh, J. Sun, J. Doricko, and C.J. Vath, “Development of through-silicon via (TSV) interposer technology for large die (21x21mm) fine-pitch Cu/low-k FCBGA package”, Proc. of IEEE/ECTC, May 2009, pp. 305-312.
76. C.S. Selvanayagam, J.H. Lau, X. Zhang, S.K.W. Seah, K. Vaidyanathan, and T.C. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (through-silicon via) and their flip-chip microbumps”, IEEE Trans. on Advanced Packaging, Vol. 32, No. 4, Nov. 2009, pp. 720-728.
77. J.H. Lau, Y.S. Chan, and S.W.R. Lee, “3D IC integration with TSV interposers for high-performance applications”, Chip Scale Review, Vol. 14, No. 5, Sept/Oct, 2010, pp. 26-29.
78. X. Zhang, T.C. Chai, J. H. Lau, C.S. Selvanayagam, K. Biswas, S. Liu, D. Pinjala, G.Y. Tang, Y.Y. Ong, S.R. Vempati, E. Wai, H.Y. Li, E.B. Liao, N. Ranganathan, V. Kripesh, J. Sun, J. Doricko, and C.J. Vath, “Development of large die fine-pitch Cu/low-k FCBGA package with through-silicon via (TSV) interposer”, IEEE Trans. on CPMT, Vol. 1, No. 5, May 2011, pp. 660-672.
79. B. Banijamali, C.C. Chiu, C.C. Hsieh, T.S. Lin, C. Hu, S.Y. Hou, S. Ramalingam, S.P. Jeng, L. Madden, and C.H. Yu, “Reliability evaluation of a CoWoS-enabled 3D IC package”, Proc. of IEEE/ECTC, May 2013, pp. 35-40.
80. W.S. Kwon, M. Kim, J. Chang, S. Ramalingam, L. Madden, G. Tsai, S. Tseng, J.Y. Lai, T. Lu, and S. Chiu, “Enabling a manufacturable 3D technologies and ecosystem using 28nm FPGA with stack silicon interconnect technology”, IMAPS Proc. of Inter. Symp. on Microelectronics, Oct. 2013, pp. 217-222.
81. J.H. Lau, “Supply chains for high-volume manufacturing of 3D IC integration”, Chip Scale Review Magazine, Vol. 17, No. 1, Jan./Feb. 2013, pp. 33-39.
82. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng. R 27 (2000) 95.
83. S. Topani, S. Gopakumar, P. Borgesen, and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, pp.423.
84. H. Roberts and K. Johal, “Lead-free soldering”, Springer, New York, (2007).
85. P. Snugosky, P. Arrowsmith, and M. Romansky, “Electroless Ni/immersion Au interconnects: Investigation of black pad in wire bonds and solder joints”, J. Electron. Mater. 30 (2001) 1262.
86. K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating”, JOM 58 (2006) 75.
87. B.K. Kim, S.J. Lee, J.Y. Kim, K.Y. Ji, Y.J. Yoon, M.Y. Kim, S.H. Park, and J.S. Yoo, “Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process”, J. Electron. Mater. 37 (2008) 527.
88. K. Suganuma and K.S. Kim, “The root causes of the “Black pad” phenomenon and avoidance tactics”, JOM 60 (2008) 61.
89. Y.S. Won, S.S. Park, J. Lee, J.Y. Kim, and S.J. Lee, “The pH effect on black spots in surface finish: Electroless nickel immersion gold”, Appl. Surf. Sci. 257 (2010) 56.
90. J. Osenbach, A. Amin, F. Baiocchi, and J. Delucca, “ENIG corrosion induced by second-phase precipitation”, J. Electron. Mater. 38 (2009) 2592.
91. Z. Mei and A. Eslambolchi, “Evaluation of Ni/Pd/Au as an alternative metal finish on PCB”, Circuit World 25 (1999) 18.
92. Y.D. Jeon, Y.B. Lee, and Y.S. Choi, “Thin electroless Cu/OSP on electroless Ni as a novel surface finish for flip chip solder joints”, Electronic Components and Technology Conference (2006).
93. Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima, S. Hashimoto, and D. Gudeczauskas, “Study of suitable palladium and gold thickness in ENEPIG deposits for lead free soldering and gold wire bonding”, in: 41st International Symposium Microelectronics, 2008.
94. C.H. Fu, L.Y. Hung, D.S. Jiang, C.C. Chang, Y.P. Wang, and C.S. Hsiao, “Evaluation of new substrate surface finish: electroless nickel/electroless palladium/immersion gold (ENEPIG)”, 2008 Electronic Components and Technology Conference Proceedings, p.1931.
95. L. Juanjuan, Z. Zhenqing, and J. Lee, “Wire bonding performance and solder joint reliability investigation on ENEPIG finish substrate”, 2010 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.240.
96. Y. Oda, M. Kiso and S. Hashimoto, “IMC growth study on Ni-P/Pd/Au film and Ni-P/Au film using Sn/Ag/Cu lead-free solder”, Proceedings of IPC Printed Circuit Expo 2006.
97. G. Milad and M. Orduz, “Surface Finishes in a Lead-Free WorldRolls regulations force alternative formulations, processes”, Met. Finish. 105 (2007) 25.
98. Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima, S. Hashimoto, and D. Gudeczauskas, “Study of suitable palladium and gold thickness in ENEPIG deposits for lead free soldering and gold wire bonding”, in: 41st International Symposium Microelectronics, 2008.
99. J. Mao, B. Liu, M. Li, Y. Wang, and D. Mao, “IMC formation between electroless Ni/Pd/Au surface finish and SnAgCu solder”, 2008 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.1.
100. H.M. Lin, C.Y. Ho, W.L. Chen, Y.H. Wu, D.H. Wang, J.R. Lin, Y.H. Wu, H.C. Hong, Z.W. Lin, and J.G. Duh, “Interfacial reaction and mechanical evaluation in multi-level assembly joints with ENEPIG under bump metallization via drop and high speed impact test”, Microelectron. Reliab. (In press).
101. S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, “Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure”, J. Alloys Compd. 493 (2010) 431.
102. W.H. Wu, C.S. Lin, S.H. Huang, and C.E. Ho, “Influence of palladium thickness on the soldering reactions between Sn-3Ag-0.5Cu and Au/Pd(P)/Ni(P) surface finish”, J. Electron. Mater. 39 (2010) 2387.
103. A.M. Yu, J.K. Kim, J.H. Lee, and M.S. Kim, “Pd-doped Sn-Ag-Cu-In solder material for high drop/shock reliability”, Mater. Res. Bull. 45 (2010) 359.
104. J. W. Yoon, B. I. Noh, J.H. Yoon, H.B. Kang, and S.B. Jung, “Sequential interfacial intermetallic compound formation of Cu6Sn5 and Ni3Sn4 between Sn-Ag-Cu solder and ENEPIG substrate during a reflow process”, J. Alloys Compd. 509 (2011) L153.
105. C.E. Ho, W.H. Wu, L.H. Hsu, and C.S. Lin, “Solid–solid reaction between Sn-3Ag-0.5Cu alloy and Au/Pd(P)/Ni(P) metallization pad with various Pd(P) thicknesses”, J. Electron. Mater. 41 (2012) 11.
106. C.P. Lin and C.M. Chen, “Solid-state interfacial reactions at the solder joints employing Au/Pd/Ni and Au/Ni as the surface finish metallizations”, Microelectron. Reliab. 52 (2012) 385.
107. Y.M. Kim, J.Y. Park, and Y.H. Kim, “Effect of Pd thickness on the interfacial reaction and shear strength in solder joints Between Sn-3.0Ag-0.5Cu solder and electroless nickel-electroless palladium-immersion gold (ENEPIG) surface finish”, J. Electron. Mater. 41 (2012) 763.
108. S. Ou, Y. Xu, K.N. Tu, M.O. Alam, and Y.C. Chan, “Micro-impact test on lead-free BGA balls on Au/electrolytic Ni/Cu bond pad”, Electronic Components and Technology Conference 2005 Proceedings, p.467.
109. T. Morita, R. Kajiwara, I. Ueno, and S. Okabe, “New method for estimating impact strength of solder-ball-bonded interfaces in semiconductor packages”, Jpn. J. Appl. Phys. 47 (2008) 6566.
110. F. Song, S.W.R. Lee, K. Newman, B. Sykes, and S. Clark, “High-speed solder ball shear and pull tests vs. board level mechanical drop tests: correlation of failure mode and loading speed”, Electronic Components and Technology Conference 2007 Proceedings, p.1504.
111. Y. Xu, S. Ou, K.N. Tu, K. Zeng, and R. Dunne, “Measurement of impact toughness of eutectic SnPb and SnAgCu solder joints in ball grid array by mini-impact tester”, J. Mater. Res. 23 (2008) 1482.
112. D.S. Liu, C.Y. Kuo, C.L. Hsu, G.S. Shen, Y.R. Chen, and K.C. Lo, “Failure mode analysis of lead-free solder joints under high speed impact testing”, Mater. Sci. Eng. A 494 (2008) 196.
113. S.S. Ha, J.K. Jang, S.O. Ha, J.W. Kim, J.W. Yoon, B.W. Kim, S.K. Park, and S.B. Jung, “Mechanical property evaluation of Sn-3.0A-0.5Cu BGA solder joints using high-speed ball shear test”, J. Electron. Mater. 38 (2009) 2489.
114. S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu, and J.G. Duh, “Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints”, Mater. Lett. 80 (2012) 103.
115. C.Y. Ho, J.G. Duh, C.W. Lin, C.J. Lin, Y.H. Wu, H.C. Hong, and T.H. Wang, “Microstructural variation and high-speed impact responses of Sn–3.0Ag–0.5Cu/ENEPIG solder joints with ultra-thin Ni–P deposit”, J. Mater. Sci. 48 (2013) 2724.
116. C.F. Tseng, C.J. Lee, and J.G. Duh, “Roles of Cu in Pb-free solders jointed with electroless Ni(P) plating”, Mater. Sci. Eng. A-Struct Mater Prop Microstruct Process 574 (2013) 60.
117. B.F. Dyson, “Diffusion of gold and silver in tin single crystals”, J. Appl. Phys. 37 (1966) 2375.
118. B.F. Dyson, T.R. Anthony, and D. Turnbull, “Interstitial diffusion of copper in tin”, J. Appl. Phys. 38 (1967) 3408.
119. D.C. Yeh and H.B. Huntington, “Extreme fast-diffusion system –nickel in single-crystal tin”, Phys. Rev. Lett. 53 (1984) 1469.
120. S.K. Seo, S.K. Kang, M.G. Cho, D.Y. Shih, and H.M. Lee, “The crystal orientation of β-Sn grains in Sn-Ag and Sn-Cu solders affected by their interfacial reactions with Cu and Ni(P) under bump metallurgy”, J. Electron. Mater. 38 (2009) 2461.
121. L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, “Cyclic twin nucleation in tin-based solder alloys”, Acta Mater. 58 (2010) 3546.
122. T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, E.J. Cotts, and B. Nandagopal, “Influence of Sn grain size and orientation on the thermomechanical response and reliability of Pb-free solder joints”, Electronic Components and Technology Conference 2006 Proceedings, p.1462.
123. T.K. Lee, K.C. Liu, and T.R. Bieler, “Microstructure and orientation evolution of the Sn phase as a function of position in ball grid arrays in Sn-Ag-Cu solder joints”, J. Electron. Mater. 38 (2009) 2685.
124. M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, “Effect of Sn grain orientation on electromigration degradation mechanism in high Sn-based Pb-free solders”, Appl. Phys. Lett. 92 (2008) 211909.
125. S.K. Seo, M.G. Cho, and H.M. Lee, “Crystal orientation of β-Sn grain in Ni(P)/Sn–0.5Cu/Cu and Ni(P)/Sn–1.8Ag/Cu joints”, J. Mater. Res., 25 (2010) 1950.
126. T.K. Lee, B. Zhou, and T.R. Bieler, “Impact of Isothermal Aging and Sn Grain Orientation on the Long-Term Reliability of Wafer-Level Chip-Scale Package Sn–Ag–Cu Solder Interconnects”, IEEE Trans. Compon. Pack. Manuf. Technol. 2 (2012) 496.
127. P. Sarobol and W.H. Chen, “Effects of local grain misorientation andb-Sn elastic anisotropy on whisker and hillock formation”, J. Mater. Res. 28 (2013) 747.
128. D. Mu, H. Yasuda, H. Huang, and K. Nogita, “Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu”, J. Alloys Compd. 536 (2012) 38.
129. C.F. Tseng, C.Y. Ho, J. Lee, and J.G. Duh, “Crystallographic characterization and growth behavior of (Cu,Ni,Pd)6Sn5 intermetallic compound in Ni(P)/Pd/Au/SnAgCu/Cu assembled solder joint”, J. Alloys Compd. 600 (2014) 21.
130. B. Arfaei, Y. Xing, J. Woods, J. Wolcott, P. Tumne, P. Borgesen, E. Cotts, “The Effect of Sn Grain Number and Orientation on the Shear Fatigue Life of SnAgCu Solder Joints”, In: Proc. of 58th Electronic Components and Technology Conference, Orlando, Fl., June 2008, pp. 459.
131. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, “Evolution of CuSn intermetallics between molten SnAgCu solder and Cu substrate”, Acta Mater. 56 (2008) 4291.
132. Y. Tian, L. Niu, and C. Wang, “Analysis of Cu6Sn5 grain orientations in Sn3.0Ag0.5Cu lead-free solder joints”, 2011 International Conference on Electronic Packaging Technology & High Density Packaging Proceeding, p.353.
133. M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, and L Weng, “Growth behavior of Cu6Sn5 grains formed at an Sn3.5Ag/Cu interface”, Mater. Lett. 65 (2011) 1506.
134. W. Liu, Y. Tian, C. Wang, X. Wang, and R. Liu, “Morphologies and grain orientations of Cu–Sn intermetallic compounds in Sn3.0Ag0.5Cu/Cu solder joints”, Mater. Lett. 86 (2012) 157.
135. M. Yang, M. Li, and J. Kim, “Texture evolution and its effects on growth of intermetallic compounds formed at eutectic Sn37Pb/Cu interface during solid-state aging”, Intermetallics 31 (2012) 177.
136. H. Kim, M. Zhang, C.M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie, and Z. Wang. “Improved drop reliability performance with lead free solders of low Ag content and their failure modes”, In: Proc 57th Electronics Components and Technology Conference, IEEE Components, Packaging, and Manufacturing Technology, Reno, NV 2007; 962.
137. C.E. Ho, L.H. Hsu, S.W. Lin, and M.A. Rahman, “Influence of Pd Concentration on the Interfacial Reaction and Mechanical Reliability of the Ni/Sn-Ag-Cu-xPd System”, J. Electron. Mater. 41 (2012) 2.
138. F. Mirza, B. Roggeman, and J.M. Pitarresi, “Investigation of impact response of Pb-free assemblies and comparison of drop test with cyclic 4-point bend”, In: Proceedings of the XIth International Congress and Exposition, Orlando, Florida USA 2008.
139. K.D. Song, K.B. Kim, S.H. Han, and H.K. Lee, “Effect of Cooling Rate on Growth of the Intermetallic Compound and Fracture Mode of Near-Eutectic Sn-Ag-Cu/Cu Pad : Before and After Aging”, J. Electron. Mater. 33 (2004) 1530.
140. J.Y. Kim, J. Yu, and T.Y. Lee, “Effect of Electrodeposition Conditions on Kirkendall Void Formation between Electrodeposited Cu Film and Sn-3.5Ag Solder”, In: Proc 57th Electronics Components and Technology Conference, IEEE Components, Packaging, and Manufacturing Technology, Reno, NV 2007; 1620.
141. C.E. Ho, T.T. Kuo, C.C. Wang, and W.H. Wu, “Inhibiting the Growth of Cu3Sn and Kirkendall Voids in the Cu/Sn-Ag-Cu System by Minor Pd Alloying”, Electron. Mater. Lett. 8 (2012) 495.
142. N. Chawla and R.S. Sidhu, “Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys”, J. Mater. Sci. 18 (2007) 175.
143. K.E. Yazzie, H.X. Xie, J.J. Williams, and N. Chawla, “On the relationship between solder-controlled and intermetallic compound (IMC)-controlled fracture in Sn-based solder joints”, Scripta Mater. 66 (2012) 586.
144. H. Fei, K. Yazzie, N. Chawla, and H. Jiang, “Modeling Fracture of Sn-Rich (Pb-Free) Solder Joints Under Mechanical Shock Conditions”, J. Electron. Mater. 41 (2012) 2089.
145. T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, “Effects of Sn grain orientation on substrate dissolution and intermetallic precipitation in solder joints under electron current stressing”, Scripta Materialia 80 (2014) 37.
146. D. Mu, H. Huang, and K. Nogita, “Anisotropic mechanical properties of Cu6Sn5and (Cu,Ni)6Sn5”, Mater. Lett. 86 (2012) 46.
147. H.T. Chen, B.B. Yan, M. Yang, X. Ma, and M. Li, “Effect of grain orientation on mechanical properties and thermomechanical response of Sn-based solder interconnects”, Mater. Charact. 85 (2013) 64.
148. H.T. Chen, J. Li, and M. Li, “Dependence of recrystallization on grain morphology of Sn-based solder interconnects under thermomechanical stress”, J. Alloys Compd. 540 (2012) 32.
149. H.T. Chen, L. Wang, J. Han, M.Y. Li, Q.B. Wu, and J.M. Kim, “Grain orientation evolution and deformation behaviors in Pb-free solder interconnects under mechanical stresses”, J. Electron. Mater. 40 (2011) 2445.
150. T.T. Mattila and J.K. Kivilahti, “The failure mechanism of recrystallization-assisted cracking of solder interconnections”, TMS2013 Annual Meeting Supplemental Proceedings (2013) 403.